Aceite de pescado. Lípidos, proteínas
Karlos08524 de Septiembre de 2014
3.926 Palabras (16 Páginas)300 Visitas
ANTECEDENTES DEL PESCADO
Composición Química del Pescado
Varía considerablemente entre las diferentes especies y también entre individuos de una misma especie, dependiendo de la edad, sexo, medio ambiente y estación del año.
Los principales constituyentes de los peces y los mamíferos pueden ser divididos en las mismas categorías. En el Cuadro 4.1 se ilustran ejemplos de las variaciones entre ellos. La composición del músculo de la carne vacuna ha sido incluida para comparación.
Cuadro 4.1 Principales constituyentes (porcentaje) del músculo de pescado y de vacuno
Constituyente Pescado (filete) Carne vacuna (músculo aislado)
Mínimo Variación normal Máximo
Proteínas 6 16-21 28 20
Lípidos 0,1 0,2 - 25 67 3
Carbohidratos < 0,5 1
Cenizas 0,4 1,2-1,5 1,5 1
Agua 28 66-81 96 75
Composición química de los filetes de varias especies de pescados
Especie Nombre científico Agua (%) Lípidos (%) Proteínas (%) Energía (kJ/100g)
Bacaladilla a) Micromesistius poutassou 79-80 1,9-3,0 13,8-15,9 314-388
Bacalao a) Gadus morhua 78-83 0,1-0,9 15,0-19,0 295-332
Anguila a) Anguilla anguilla 60-71 8,0-31,0 14,4
Arenque a) Clupea harengus 60-80 0,4-22,0 16,0-19,0
Solla a) Pleuronectes platessa 81 1,1-3,6 15,7-17,8 332-452
Salmón a) Salmo salar 67-77 0,3-14,0 21,5
Trucha a) Salmo trutta 70-79 1,2-10,8 18,8-19,1
Atún a) Thunnus spp. 71 4,1 25,2 581
Cigala a) Nephrops norvegicus 77 0,6-2,0 19,5 369
Pejerrey b) Basilichthys bornariensis 80 0,7-3,6 17,3-17,9
Carpa b) Cyprinus carpio 81,6 2,1 16,0
Sábalo c) Prochilodus platensis 67,0 4,3 23,4
Pacu c) Colossoma macropomum 67,1 18,0 14,1
Tambaqui c) Colossoma brachypomum 69,3 15,6 15,8
Chincuiña c) Pseudoplatystoma tigrinum 70,8 8,9 15,8
Corvina c) Plagioscion squamosissimus 67,9 5,9 21,7
Bagre c) Ageneiosus spp. 79,0 3,7 14,8
El contenido de carbohidratos en el músculo de pescado es muy bajo, generalmente inferior al 0,5 por ciento. Esto es típico del músculo estriado, en el cual los carbohidratos se encuentran en forma de glucógeno y como parte de los constituyentes químicos de los nucleótidos. Estos últimos son la fuente de ribosa liberada como una consecuencia de los cambios autolíticos post mortem.
Como se demostró anteriormente, la composición química de las diferentes especies de pescados muestra diferencias dependiendo de la estación del año, comportamiento migratorio, maduración sexual, ciclos alimenticios, entre otros. Estos factores son observados en peces silvestres, del mar abierto y de aguas continentales. Los peces criados en acuicultura también pueden mostrar variaciones en la composición química, pero en este caso varios factores son controlados y por lo tanto se puede predecir la composición química. Hasta cierto punto el acuicultor tiene la posibilidad de diseñar la composición del pez, seleccionando las condiciones de cultivo. Se ha reportado que factores como la composición del alimento, ambiente, tamaño del pez y rasgos genéticos, tienen un impacto en la composición y la calidad del pescado de acuicultura (Reinitz et al., 1979).
Se considera que el factor de mayor impacto en la composición química del pez es la composición de su alimento. El acuicultor esta interesado en hacer crecer el pez lo más rápido posible empleando la menor cantidad de alimento, dado que el alimento constituye el mayor componente del costo en acuicultura. El potencial de crecimiento es mayor cuando el pez es alimentado con una dieta rica en lípidos, para propósitos energéticos, y alto contenido de proteínas con una composición balanceada de aminoácidos.
Sin embargo, la cantidad de lípidos que pueden ser metabolizados con relación a la proteína, está limitada por el patrón del metabolismo básico del pez. Dado que, dentro de la composición del alimento las proteínas resultan más costosas que los lípidos, numerosos experimentos han sido llevados a cabo con el fin de sustituir la mayor cantidad posible de proteínas por lípidos. Entre la literatura que puede ser consultada se encuentra la siguiente: Watanabe et al., 1979; Watanabe, 1982; Wilson y Halver, 1986; y Watanabe et al., 1987).
Lípidos
Los lípidos presentes en las especies de peces óseos pueden ser divididos en dos grandes grupos: los fosfolípidos y los triglicéridos. Los fosfolípidos constituyen la estructura integral de la unidad de membranas en la célula, por lo tanto, a menudo se le denomina lípidos estructurales. Los triglicéridos son lípidos empleados para el almacenamiento de energía en depósitos de grasas, generalmente dentro de células especiales rodeadas por una membrana fosfolipídica y una red de colágeno relativamente débil. Los triglicéridos son a menudo denominados depósitos de grasa. Algunos peces contienen ceras esterificadas como parte de sus depósitos de grasa.
El músculo blanco de un pez magro típico como el bacalao, contiene menos del 1 por ciento de lípidos. De este porcentaje, los fosfolípidos constituyen el 90 por ciento (Ackman, 1980). La fracción fosfolipídica en el pescado magro consiste en un 69 por ciento de fosfatidil-colina, 19 por ciento de fosfatil-etanolamina y 5 por ciento de fosfatidil-serina. Adicionalmente, existen otros fosfolípidos pero en cantidades inferiores.
Todos los fosfolípidos se encuentran almacenados en las estructuras de la membrana, incluyendo la membrana celular, el retículo endoplasmático y otros sistemas tubulares intracelulares, como también en membranas de los organelos como las mitocondrias. Además de fosfolípidos, las membranas también contienen colesterol, que contribuye a la rigidez de la membrana. En el tejido muscular de pescados magros se puede encontrar colesterol hasta en un 6 por ciento del total de los lípidos. Este nivel es similar al encontrado en los músculos de mamíferos.
Según se explicó anteriormente, las especies de pescado pueden ser clasificadas en magras o grasas dependiendo de como almacenan los lípidos de reserva energética. Los pescados magros usan el hígado como su depósito de energía y las especies grasas almacenan lípidos en células grasas en todas partes del cuerpo.
Las células grasas -que constituyen los depósitos de lípidos en las especies grasas- están localizadas generalmente en el tejido subcutáneo, en los músculos del vientre y en los músculos que mueven las aletas y la cola. En algunas especies que almacenan cantidades extraordinariamente elevadas de lípidos, la grasa también puede ser depositada en la cavidad ventral. Dependiendo de la cantidad de ácidos grasos poliinsaturados, la mayor parte de las grasas en el pescado son más o menos líquidas a baja temperatura.
Finalmente, los depósitos de grasa también se encuentran esparcidos por toda la estructura muscular. La concentración de células grasas parece ser más elevada cerca de las miocomatas y en las regiones entre el músculo blanco y el oscuro (Kiessling et al., 1991). El músculo oscuro contiene algunos triglicéridos dentro de las células musculares, incluso en peces magros, dado que este músculo es capaz de metabolizar directamente lípidos para la obtención de energía. Las células del músculo claro dependen del glucógeno como fuente de energía para el metabolismo anaeróbico.
En el músculo oscuro las reservas de energía son catabolizadas completamente a CO2 y agua, mientras en el músculo claro se forma ácido láctico. La movilización de energía es mucho más rápida en el músculo claro que en el oscuro, pero la formación de ácido láctico genera fatiga, dejando el músculo incapacitado para trabajar por largos períodos a máxima velocidad. De esta forma, el músculo oscuro es usado para actividades de nado continuo y el músculo claro para movimientos súbitos como cuando el pez está a punto de atrapar una presa o para escapar de un depredador.
Proteínas
Las proteínas del músculo del pez se pueden dividir en tres grupos:
1 Proteínas estructurales (actina, miosina, tropomiosina y actomiosina), que constituyen el 70-80 por ciento del contenido total de proteínas (comparado con el 40 por ciento en mamíferos). Estas proteínas son solubles en soluciones salinas neutras de alta fuerza iónica ( 0,5 M).
2. Proteínas sarcoplasmáticas (mioalbúmina, globulina y enzimas), que son solubles en soluciones salinas neutras de baja fuerza iónica (0,15 M). Esta fracción constituye el 25-30 por ciento del total de proteínas.
3. Proteínas del tejido conectivo (colágeno), que constituyen aproximadamente el 3 por ciento del total de las proteínas en teleósteos y cerca del 10 por ciento en elasmobranquios (comparado con el 17 por ciento en mamíferos).
Las proteínas estructurales conforman el aparato contráctil responsable de los movimientos musculares según lo explicado en la Sección 3.2. La composición de aminoácidos es aproximadamente la misma que en las correspondientes proteínas del músculo de mamíferos, a pesar de que las propiedades físicas pueden ser ligeramente diferentes. El punto isoeléctrico (pI) está alrededor del pH 4.5-5.5. A estos valores de pH las proteínas presentan su menor solubilidad, según se ilustra en la Figura 4.4.
La estructura conformacional de las proteínas de los peces es fácilmente modificada mediante cambios en el ambiente físico. La Figura 4.4 muestra como cambian las características de solubilidad de las proteínas miofibrilares después de una congelación/deshidratación. Tratamientos con altas concentraciones salinas o calor pueden
...