ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Casos De Factorizacion

safernandez1 de Mayo de 2013

7.455 Palabras (30 Páginas)693 Visitas

Página 1 de 30

FACTOR COMÚN

1: (Hay factor común entre los números)

8a - 4b + 16c + 12d = 4. (2a - b + 4c + 3d)

El factor común es el número 4: El Máximo Común Divisor entre los números.

2: (Hay factor común entre las letras)

7x2 + 11x3 - 4x5 + 3x4 - x8 = x2. (7 + 11x - 4x3 + 3x2 - x6)

El factor común es x2.: La x elevada a la menor potencia con que aparece.

3: (Hay factor común entre los números y entre las letras)

9x3 - 6x2 + 12x5 - 18x7 = 3x2. (3x - 2 + 4x3 - 6x5)

El factor común es 3x2: El MCD entre los números y la x elevada a la menor potencia.

4: (Con fracciones)

4/3 x - 8/9 x3 + 16/15 x7 - 2/3 x5 = 2/3 x. (2 - 4/3 x2 + 8/5 x6 - x4)

El factor común es 2/3 x: El MCD del numerador sobre el MCD del denominador, y la x a la menor potencia.

5: (Con varias letras diferentes)

9x2ab - 3xa2b3 + x2az = xa. (9xb - 3ab2 + xz)

El factor común es xa. Las 2 letras que están en todos los términos, con la menor potencia con la que aparecen.

6: (Con números grandes)

36x4 - 48x6 - 72x3 + 60x5 = 12x3. (3x - 16x3 - 6 + 5x2)

Entre números grandes es más difícil hallar el MCD.

7: (Sacar factor común negativo)

8a - 4b + 16c + 12d = - 4. (- 2a + b - 4c - 3d)

Saco factor común "-4". Todos los términos quedan con el signo contrario al que traían.

8: (El Factor común es una expresión de más de un término)

(x + 1).3 - 5x. (x + 1) + (x + 1).x2 = (x + 1). (3 - 5x + x2)

(x + 1) está multiplicando en todos los términos. Es factor común.

9: ("Sacar un número que no es divisor de todos los términos")

3a + 2b - 5c + 9d = 7. (3/7 a + 2/7 b - 5/7 c + 9/7 d)

Divido todos los términos por 7, y quedan números fraccionarios. Esto lo puedo hacer con cualquier número.

10: (Normalizar un polinomio)

5x4 - 2x3 - 3x + 4 = 5. (x4 - 2/5 x3 - 3/5 x + 4/5)

Normalizar es "quitarle" el número (coeficiente) al término de mayor grado. Por eso divido todo por 5.

FACTOR COMÚN EN GRUPOS

1: (Todos los términos son positivos)

4a + 4b + xa + xb =

4.(a + b) + x.(a + b) =

(a + b).(4 + x)

Saco factor común "4" en el primer y segundo término; y factor común "x" en el tercer y cuarto término. Los dos "resultados" son iguales: (a + b). Luego, saco como factor común a (a + b).

2: ("Resultado desordenado")

4a + 4b + xb + xa =

4.(a + b) + x.(b + a) =

4.(a + b) + x.(a + b) =

(a + b).(4 + x)

En el primer paso el "resultado" quedó "desordenado": (b + a). Pero puedo cambiar el orden de los términos, ya que (b + a) es igual que (a + b)

3: (Con términos negativos)

4a - 4b + xa - xb =

4.(a - b) + x.(a - b) =

(a - b).(4 + x)

Si los "resultados" quedan iguales no hay problema.

4: (Con términos negativos y "Resultado desordenado")

4a - 4b - xb + xa =

4.(a - b) + x.(-b + a) =

4.(a - b) + x.(a - b) =

(a - b).(4 + x)

En el primer paso quedó desordenado, pero luego puedo cambiar el orden de los términos, ya que (- b + a) es igual que (a - b)

5: (Resultados "opuestos")

4a - 4b - xa + xb =

4.(a - b) + x.(-a + b) =

4.(a - b) - x.(a - b) =

(a - b).(4 - x)

En el primer paso quedaron los signos opuestos para los dos términos. Pero en el segundo paso, "saco el menos afuera y hago un cambio de signos" (lo que en realidad es Sacar Factor Común negativo)

6: (Resultados "opuestos" y "desordenados")

4a - 4b + xb - xa =

4.(a - b) + x.(b - a) =

4.(a - b) - x.(-b + a) =

4.(a - b) - x.(a - b) =

(a - b).(4 - x)

Luego de agrupar, los resultados quedan desordenados, y con el signo opuesto cada término. En el segundo paso, "saco el menos afuera y hago un cambio de signos" (como en el Ejemplo 5); y en el tercer paso cambio el orden de los términos, ya que (- b + a) es igual que (a - b)

7: (Todos los términos son negativos)

-4a - 4b - xa - xb =

-4.(a + b) - x.(a + b) =

(a + b).(-4 - x)

En estos casos es casi mejor sacar directamente Factor Común negativo (¿Cómo sacar Factor Común negativo?) Y sino también, en la "EXPLICACIÓN", también muestro cómo se haría sacando Factor Común positivo.

8: (Agrupando términos no consecutivos)

4x2a + 3y + 12ax + yx =

4ax.(x + 3) + y.(3 + x) =

4ax.(x + 3) + y.(x + 3) =

(x + 3).(4ax + y)

No siempre podemos agrupar en el orden en que viene el ejercicio. Tiene que haber Factor Común entre los que agrupamos, y el "resultado" debe dar igual (o desordenado u opuesto, como se ve en los ejemplo anteriores).

En este caso tuve que agrupar primero con tercero y segundo con cuarto.

9: (Polinomio de 6 términos)

4a - 7x2a + ya + 4z - 7x2z + yz =

a.(4 - 7x2 + y) + z.(4 - 7x2 + y) =

(4 - 7x2 + y).(a + z)

Aquí hay 6 términos, y dos maneras posibles de agrupar: 2 grupos de 3 términos, o 3 grupos de 2 términos. En este caso agrupé de a 3 términos. (Para verlo también de la otra forma, consultar en la EXPLICACIÓN)

10: (Cuando parece que no se puede aplicar el caso, pero se puede)

4x3 - 4x2 + x - 1 =

4x2.(x - 1) + x - 1 =

4x2.(x - 1) + 1.(x - 1) =

(x - 1).(4x2 + 1)

Parece que no se pudiera aplicar el caso, porque entre la x y el 1 que quedaron no hay Factor Común. Sin embargo el caso se puede aplicar, sólo se trata de saber reconocer la situación. En el paso 2 es donde se vislumbra la posibilidad de usar el caso, por el resultado que dió la primera agrupación: (x - 1), que es igual a lo que quedó sin agrupar.

TRINOMIO CUADRADO PERFECTO

1: (Términos positivos)

x2 + 6x + 9 = (x + 3)2

x 3

2.3.x

6x

Busco dos términos que sean "cuadrado" de algo. Son: x2 y 9. Entonces "bajo" la x y el 3 (las bases). Luego verifico 2.x.3 = 6x ("doble producto del primero por el segundo"). Dió igual que el otro término. El polinomio es un cuadrado "perfecto". El resultado de la factorización es la suma de las bases elevada al cuadrado: (x + 3)2

2: (Con el "1")

x2 + 2x + 1 = (x + 1)2

x 1

2.1.x

2x

Recordemos que el "1" es cuadrado (de "1" y "-1"). Las bases son: x y 1.

La verificación de que es "perfecto" es 2.x.1 = 2x.

El resultado es (x + 1)2

3: (Con fracciones)

x2 + 8/3 x + 16/9 = (x + 4/3)2

x 4/3

2. 4/3 . x

8/3 x

La fracción 16/9 es cuadrado de 4/3. Las bases son x y 4/3.

4: (Con un término negativo)

x2 - 10x + 25 = (x - 5)2

x (-5)

2.(-5).x

-10x

Tomo como bases a "x" y "(-5)", ya que (-5)2 también es 25. Y con (-5), la verificación del doble producto dá bien. El resultado es la suma de las bases, al cuadrado. O sea (x + (-5))2 , que es igual a (x - 5)2.

5: (Desordenado)

x + x2 + 1/4 = (x + 1/2)2

x 1/2

2.x.1/2

x

No siempre están los dos cuadrados en los extremos. Las bases son "x" y "1/2", y el doble producto está en el primer término.

6: (Con un número multiplicando a la x2)

9x2 + 30x + 25 = (3x + 5)2

3x 5

2.5.3x

30x

Las bases son 3x y 5, ya que (3x)2 dá 9x2. En este caso hay un número acompañando a la letra que está al cuadrado. Para que el término sea uno de los cuadrados que buscamos, ese número también tiene que ser un cuadrado (4, 9, 16, 25, etc.).

7: (Con potencias diferentes a "2")

x6 + 10x3 + 25 = (x3 + 5)2

x3 5

2.x3.5

10x3

Bajo x3, ya que x6 es igual a (x3)2; es decir que es un "cuadrado", el cuadrado de x3. Las otras potencias pares (4, 6, 8, etc.) también son "cuadrados", ya que x4, por ejemplo, es igual a (x2)2; x6 es igual a (x3)2, por una propiedad de las potencias (potencia de potencia).

8: (Con varias letras diferentes)

4x2 + 4xa3 + a6 = (2x + a3)2

2x a3

2.2x.a3

4xa3

En los dos términos que son "cuadrados" puede haber letras. Las dos deben ser "cuadrados", por supuesto. El término del medio también tendrá las 2 letras.

9: (Con números decimales)

0,09a6 + 1 - 0,6a3 = (0,3a3 - 1)2

0,3a3 (-1)

2.0,3a3.1

...

Descargar como (para miembros actualizados) txt (30 Kb)
Leer 29 páginas más »
Disponible sólo en Clubensayos.com