ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fractales

MARIBEL14962 de Noviembre de 2014

2.633 Palabras (11 Páginas)195 Visitas

Página 1 de 11

Fractales

¿Qué es un fractal?

Un fractal es un objeto geométrico cuya estructura básica, fragmentada o irregular, se repite a diferentes escalas.1 El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del Latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal. La propiedad matemática clave de un objeto genuinamente fractal es que su dimensión métrica fractal es un número no entero.

Si bien el término "fractal" es reciente, los objetos hoy denominados fractales eran bien conocidos en matemáticas desde principios del siglo XX. Las maneras más comunes de determinar lo que hoy denominamos dimensión fractal fueron establecidas a principios del siglo XX en el seno de la teoría de la medida.

¿Cuándo apareció?

Los fractales fueron concebidos aproximadamente en 1890 por el francés Henri Poincaré. Sus ideas fueron extendidas más tarde fundamentalmente por dos matemáticos también franceses, Gastón Julia y Pierre Fatou, hacia 1918. Se trabajó mucho en este campo durante varios años, pero el estudio quedó congelado en los años ’20.

El estudio fue renovado a partir de 1974 en IBM y fue fuertemente impulsado por el desarrollo de la computadora digital. El Dr. Mandelbrot, de la Universidad de Yale, con sus experimentos de computadora, es considerado como el padre de la geometría fractal. En honor a él, uno de los conjuntos que él investigó fue nombrado en su nombre. Otros matemáticos, como Douady, Hubbard y Sullivan trabajaron también en esta área explorando más las matemáticas que sus aplicaciones. Desde la década del ’70 este campo ha estado en la vanguardia de los matemáticos contemporáneos. Investigadores como el Dr. Robert L. Devaney, de la Universidad de Boston ha estado explorando esta rama de la matemática con la ayuda de las computadoras modernas.

Característica de los fractales

Autosimilitud

Según B. Mandelbrot, un objeto es autosimilar o autosemejante si sus partes tienen la misma forma o estructura que el todo, aunque pueden presentarse a diferente escala y pueden estar ligeramente deformadas.

Los fractales pueden presentar tres tipos de autosimilitud:

• Autosimilitud exacta: es el tipo más restrictivo de autosimilitud: exige que el fractal parezca idéntico a diferentes escalas. A menudo la encontramos en fractales definidos por sistemas de funciones iteradas (IFS).

• Cuasiautosimilitud: exige que el fractal parezca aproximadamente idéntico a diferentes escalas. Los fractales de este tipo contienen copias menores y distorsionadas de sí mismos. Matemáticamente D. Sullivan definió el concepto de conjunto cuasiauto-similar a partir del concepto de cuasi-isometría. Los fractales definidos por relaciones de recurrencia son normalmente de este tipo.

• Autosimilitud estadística: Es el tipo más débil de autosimilitud: se exige que el fractal tenga medidas numéricas o estadísticas que se preserven con el cambio de escala. Los fractales aleatorios son ejemplos de fractales de este tipo.

• La dimensión de Hausdorff-Besicovitch. Tiene una definición más compleja que la de dimensión fractal. Su definición no suele usarse para comparar conjuntos del mundo real.

Conjunto de Mandelbrot

El conjunto de Mandelbrot es el más conocido de los conjuntos fractales y el más estudiado. Se conoce así en honor al matemático Benoît Mandelbrot, que investigó sobre él en la década de los setenta del siglo XX. Este conjunto se define así, en el plano complejo:

Sea c un número complejo cualquiera. A partir de c, se construye una sucesión por recursión:

Si esta sucesión queda acotada, entonces se dice que c pertenece al conjunto de Mandelbrot, y si no, queda excluido del mismo.

Por ejemplo, si c = 1 obtenemos la sucesión 0, 1, 2, 5, 26… que diverge. Como no está acotada, 1 no es un elemento del conjunto de Mandelbrot.

En cambio, si c = -1 obtenemos la sucesión 0, -1, 0, -1,… que sí es acotada, y por tanto, -1 sí pertenece al conjunto de Mandelbrot.

A menudo se representa el conjunto mediante el algoritmo de tiempo de escape. En ese caso, los colores de los puntos que no pertenecen al conjunto indican la velocidad con la que diverge (tiende al infinito, en módulo) la sucesión correspondiente a dicho punto. En la imagen de ejemplo, observamos que el rojo oscuro indica que al cabo de pocos cálculos se sabe que el punto no está en el conjunto mientras que el blanco informa de que se ha tardado mucho más en comprobarlo. Como no se puede calcular un sinfín de valores, es preciso poner un límite y decidir que si los p primeros términos de la sucesión están acotados entonces se considera que el punto pertenece al conjunto. Al aumentar el valor de p se mejora la precisión de la imagen.

Por otra parte, se sabe que los puntos cuya distancia al origen es superior a 2, es decir, no pertenecen al conjunto. Por lo tanto basta encontrar un solo término de la sucesión que verifique |zn| > 2 para estar seguro de que c no está en el conjunto. Un ejemplo de la representación del conjunto de Mandelbrot mediante el algoritmo de tiempo de escape.

Conjunto de Gastón Julia

Los conjuntos de Julia, así llamados por el matemático Gastón Julia, son una familia de conjuntos fractales que se obtienen al estudiar el comportamiento de los números complejos al ser iterados por una función holomorfa.

El conjunto de Julia de una función holomorfa está constituido por aquellos puntos que bajo la iteración de tienen un comportamiento 'caótico'. El conjunto se denota .

En el otro extremo se encuentra el conjunto de Fatou (en honor del matemático Pierre), que consiste de los puntos que tienen un comportamiento 'estable' al ser iterados. El conjunto de Fatou de una función holomorfa se denota y es el complemento de .

Podemos definir el conjunto de Julia de un polinomio de variable compleja como la frontera del conjunto de puntos que escapan al infinito al iterar dicho polinomio. Esto significa que la órbita de un elemento del conjunto de Julia no escapa al infinito, pero existen puntos arbitrariamente cerca de él que sí lo hace.

Vamos a ver un ejemplo basándonos en la función

• f(z) = z2 + 0.279

Curva y Copo de Nieve de Koch

Un matemático, Helge von Koch, captó esta idea en una construcción matemática llamada curva de Koch. Para crear una curva de Koch, imagina un triángulo equilátero. En el tercio central de cada lado, añade otro triángulo equilátero. Sigue añadiendo nuevos triángulos en la parte central de cada lado, y el resultado es una curva de Koch. Una ampliación de la curva de Koch tendría el mismo aspecto que el original. Es otra figura auto-similar.

La curva de Koch nos brinda una interesante paradoja. Cada vez que añadimos nuevos triángulos a la figura, la longitud de la línea se hace mayor. Sin embargo, el área interior a la curva de Koch permanece menor que el área de un círculo dibujado alrededor del triángulo original. Esencialmente, es una línea de longitud infinita que rodea un área finita.

Triángulo de Sierpinski

El nombre de esta figura fractal se debe a su creador, el matemático polaco W. Sierpinski (1882-1969). La construcción clásica de esta figura fractal es la siguiente.

Como en la mayoría de los fractales, existen varias maneras de obtener la misma figura (triángulos). En este caso, todos los procesos implican las tres homotecias centradas en los vértices del triángulo, de razón 1/2. Notémoslas ha, hb y hc.

Es fácil observar que ésta figura contiene tres reducciones de sí misma: El triángulo ADE con todo su contenido es una reducción exacta del triángulo ABC, y lo mismo se puede decir de CDF y de BEF. Estos tres clonos son justamente las imágenes de ABC por ha, hb y hc. Y como no quedan puntos del fractal fuera de estas tres reducciones, se puede escribir (T designa el triángulo de Sierpinski):

T = ha(T) ∪ hb(T) ∪ hc(T)

En otras palabras, T es invariable por la aplicación

...

Descargar como (para miembros actualizados) txt (16 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com