ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

INECUACIÓN

willianrd16 de Octubre de 2013

741 Palabras (3 Páginas)612 Visitas

Página 1 de 3

INECUACIÓN

En matemática, una inecuación es una desigualdad algebraica en la que aparecen una o más incógnitas en los miembros de la desigualdad. Si la desigualdad es del tipo o se denomina inecuación en sentido estricto y si es del tipo o se denomina inecuación en sentido amplio.3

Del mismo modo en que se hace la diferencia entre igualdad y ecuación, una inecuación que es válida para todas las variables se llama inecuación incondicional y las que son válidas solo para algunos valores de las variables se conocen como inecuaciones condicionales.4 Los valores que verifican la desigualdad, son sus soluciones.

• Ejemplo de inecuación incondicional: .

• Ejemplo de inecuación condicional: .

Los criterios más comunes de clasificación del ejemplo: .

• De dos incógnitas. Ejemplo: .

• De tres incógnitas. Ejemplo: .

Según la potencia de la incógnita,

• De primer grado o lineal. Cuando el mayor exponente de la incógnita de la inecuación es uno. Ejemplo: .

• De segundo grado o cuadrática. Cuando el mayor exponente de cualquiera de sus incógnitas es dos. Ejemplo: .

• De tercer grado o cúbica. Cuando el mayor exponente de cualquiera de sus incógnitas es tres. Ejemplo: .

Nota: estas clasificaciones no son mutuamente excluyentes, como se muestra en el último ejemplo.

Inecuaciones de segundo grado con una incógnita

Se expresan a través de cualquiera de las desigualdades siguientes (con a, b y c números reales, y a distinto de cero):

Sistema de inecuaciones

La región de viabilidad en un problema deprogramación lineal está definida por un sistema de inecuaciones.

En un sistema de inecuaciones intervienen dos o más inecuaciones. No todos los sistemas de inecuaciones tienen solución.

Sistema de inecuaciones de primer grado con una incógnita[editar • editar código]

Es un conjunto de inecuaciones de primer grado con la misma variable:

La solución del sistema será el conjunto de números reales que verifican a la vez todas las inecuaciones.

1Resolver las siguientes inecuaciones

1

2

3

2Resuelve el sistema:

3Resolver las inecuaciones:

17x2 + 21x − 28 < 0

2−x2 + 4x − 7 < 0

3

4Resuelve:

1

2x4 − 25x2 + 144 < 0

3x4 − 16x2 − 225 ≥ 0

5Resolver las inecuaciones:

1

2

Ejercicio 1 resuelto

Resolver las siguientes inecuaciones

Soluciones:

1

(1, ∞)

2

3

Ejercicio 2 resuelto

Resuelve el sistema:

(x +1) • 10 + x ≤ 6 (2x + 1)

10x + 10 + x ≤ 12 x + 6

10 x + x - 12x ≤ 6 - 10

−x ≤ − 4 x ≥ 4

[4, 7)

Ejercicio 3 resuelto

Resolver las inecuaciones:

17x2 + 21x − 28 < 0

x2 +3x − 4 < 0

x2 +3x − 4 = 0

P(−6) = (−6)2 +3 • (−6)− 4 > 0

P(0) = 02 +3 • 0 − 4 < 0

P(3) = 32 +3 • 3 − 4 > 0

(−4, 1)

2−x2 + 4x − 7 < 0

x2 − 4x + 7 = 0

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com