METODO FRACCIONES PARCIALES - UNH - Castañeda
Javier Rivera VargasSíntesis3 de Diciembre de 2018
1.758 Palabras (8 Páginas)181 Visitas
MÉTODO DE FRACCIONES PARCIALES
- [pic 4]
[pic 5]
[pic 6]
Es una fracción propia.
Solución.
[pic 7]
[pic 8]
[pic 9]
[pic 10]
[pic 11]
[pic 12]
[pic 13]
ENTONCES.
[pic 14]
[pic 15]
[pic 16]
[pic 17]
[pic 18]
[pic 19]
FORMANDO SISTEMA DE ECUACIONES.
[pic 20]
[pic 21]
EN 1
[pic 22]
[pic 23]
En 2 remplazando 1
[pic 24]
[pic 25]
[pic 26]
[pic 27]
[pic 28]
REMPLAZANDO EN 1
[pic 29]
[pic 30]
[pic 31]
[pic 32]
[pic 33]
[pic 34]
REMPLAZANDO EN LA INTEGRAL.
[pic 35]
[pic 36]
[pic 37]
[pic 38]
[pic 39]
[pic 40]
[pic 41]
[pic 42]
Solución
[pic 43]
[pic 44]
[pic 45]
[pic 46]
[pic 47]
[pic 48]
[pic 49]
[pic 50][pic 51]
[pic 52]
[pic 53]
[pic 54]
[pic 55]
[pic 56]
[pic 57]
[pic 58]
[pic 59]
[pic 60]
[pic 61]
[pic 62]
[pic 63]
[pic 64]
Solución:
[pic 65][pic 66]
[pic 67]
Resolviendo:
[pic 68]
[pic 69][pic 70]
[pic 71]
[pic 72]
Igualando los coeficientes para sacar las ecuaciones
- → (3A+B+C = 0) 4 → 12A+4B+4C=0 ↓(-)[pic 73]
- → (4B+2C=1)2 → 8B+4C=2[pic 74]
- → 4B+4C=5 → 4A 4B+4C=5 ↑(-)[pic 75][pic 76][pic 77]
[pic 78][pic 79]
[pic 80]
[pic 81]
[pic 82]
[pic 83]
[pic 85][pic 84]
[pic 86]
[pic 87]
[pic 89][pic 88]
[pic 90]
Resolviendo la integral
[pic 91]
[pic 92]
[pic 93]
[pic 94]
[pic 95]
)[pic 96]
[pic 97]
- Factorizamos:
1 | -2 | -25 | 26 | 120 | |
+3 | 3 | 3 | -66 | -120 | |
1 | 1 | --22 | 40 | 0 | |
5 | 5 | 30 | 40 | ||
1 | 6 | 8 | 0 | ||
-2 | -2 | -8 | |||
1 | 4 | 0 |
[pic 98]
[pic 99]
[pic 100]
[pic 101]
[pic 102]
[pic 103]
[pic 104]
[pic 105]
[pic 106]
[pic 107]
[pic 108]
[pic 109]
e) Resolver:
[pic 110]
Resolución:
- [pic 111]
- [pic 112]
Factorizando el denominador:
[pic 113]
[pic 114]
[pic 115]
[pic 116]
[pic 117]
Por tanto nos queda:
[pic 118]
Dividiendo el numerador entre el denominador:[pic 119]
[pic 121][pic 120]
[pic 124][pic 122][pic 123]
[pic 125]
[pic 127][pic 126]
[pic 128]
Entonces:
[pic 129]
[pic 130]
Hallando “I”
= = [pic 131][pic 132][pic 133]
()[pic 134][pic 135]
[pic 136]
Formando sistema de ecuaciones:
[pic 137]
[pic 138]
[pic 139]
[pic 140]
[pic 141]
f) Resolver:
[pic 142]
Resolución:
- [pic 143]
- X[pic 144]
Por lo tanto:
[pic 145]
F[pic 146][pic 147]
+ [pic 148][pic 149]
[pic 150]
Formando sistema de ecuaciones:
[pic 151]
[pic 152]
[pic 153]
[pic 154]
[pic 155]
[pic 156]
[pic 157]
[pic 158]
[pic 159]
[pic 160]
Solución
; Grado: 5[pic 161]
; Grado: 7 [pic 162][pic 163][pic 164]
[pic 165]
[pic 166]
[pic 167]
[pic 168]
+F () +G [pic 169][pic 170][pic 171][pic 172]
[pic 173]
Igualando los coeficientes:
- B+G=0
- [pic 174]
- [pic 175]
- [pic 176]
- [pic 177]
- [pic 178]
- [pic 179]
Resolviendo la integral:
[pic 180]
[pic 181]
[pic 182]
[pic 183]
h) [pic 184]
solución:
[pic 185]
[pic 186]
[pic 187]
[pic 188]
[pic 189]
[pic 190]
[pic 191]
[pic 192]
SISTEMA DE ECUACIONES:
[pic 193]
[pic 194]
[pic 195]
[pic 196]
[pic 197]
[pic 198]
[pic 199]
[pic 200]
Solución
[pic 201]
[pic 202]
[pic 203]
[pic 204]
[pic 205]
[pic 206]
[pic 207]
[pic 208]
[pic 209]
[pic 210]
[pic 211]
[pic 212]
[pic 213]
[pic 214]
[pic 215]
[pic 216]
j)
[pic 217]
[pic 218]
[pic 219]
[pic 220]
[pic 221]
[pic 222]
[pic 223]
- [pic 224]
[pic 225]
[pic 226]
[pic 227]
[pic 228]
[pic 229]
[pic 230]
[pic 231]
[pic 232]
[pic 233]
[pic 234]
[pic 235]
[pic 236]
[pic 237]
[pic 238]
[pic 239]
[pic 240]
[pic 241]
k) Resolver:
[pic 242]
Resolución:
- [pic 243]
- [pic 244]
[pic 245]
[pic 246]
[pic 247]
[pic 248]
Formando sistema de ecuaciones:
[pic 249]
[pic 250]
[pic 251]
[pic 252]
[pic 253]
[pic 254]
[pic 255]
[pic 256]
[pic 258][pic 257]
[pic 259]
[pic 260]
[pic 261]
[pic 263][pic 262]
[pic 264]
[pic 265]
[pic 266]
[pic 268][pic 267]
[pic 269]
[pic 270]
[pic 271]
[pic 273][pic 272]
[pic 274] [pic 275] | [pic 276] [pic 277] [pic 278] | [pic 279] [pic 280] | [pic 281] [pic 282] |
Entonces:
[pic 283]
[pic 284]
[pic 285]
[pic 286]
[pic 287]
[pic 288]
[pic 289]
[pic 290]
[pic 291]
[pic 292]
[pic 293]
factor izamos el denominador aplicando la formula general:
[pic 294]
- [pic 295]
[pic 296]
[pic 297]
[pic 298]
[pic 299]
- [pic 300]
[pic 301]
[pic 302]
[pic 303]
[pic 304]
reemplazamos en la integral:
[pic 305]
[pic 306]
[pic 307]
[pic 308]
[pic 309]
[pic 310]
[pic 311]
[pic 312]
[pic 313]
[pic 314]
Igualando tenemos:
[pic 315]
[pic 316]
[pic 317]
[pic 318]
Entonces tenemos el siguiente sistema de ecuaciones:
...