Resumen La Muerte Y Sus Ventajas
karinavlzmtz311 de Abril de 2014
12.269 Palabras (50 Páginas)1.126 Visitas
INDICE
COMITÉ DE SELECCIÓN
EDICIONES
DEDICATORIA
INTRODUCCIÓN
I. LA MUERTE DE LAS CÉLULAS
II. LA MUERTE DE LOS ORGANISMOS
III. LA MUERTE DE LOS SERES HUMANOS
IV. PSICOLOGÍA DEL ENVEJECIMIENTO
V. EL PAPEL DE LA MUERTE EN LA VIDA PSÍQUICA
VI. Y TÚ, ¿QUÉ EDAD TIENES?
APÉNDICE I
APÉNDICE II
APÉNDICE III
APÉNDICE IV
APÉNDICE V
APÉNDICE VI
APÉNDICE VII
APÉNDICE VIII
APÉNDICE IX
EPÍLOGO
BIBLIOGRAFÍA
CONTRAPORTADA
INTRODUCCIÓN
Tú morirás y en este libro trataremos de explicarte por qué y cómo. Pero aun en el caso de que no te interese de manera personal, el tema de la muerte es tan imprescindible para comprender el funcionamiento de la vida, la mente y la sociedad, que sería aconsejable que lo incorpores a tu visión del mundo. Permítenos justificar dicho consejo, a través de algunos ejemplos:
Primer ejemplo. La diversidad de organismos que habitan el planeta es exuberantemente exagerada: así, hay bichos que vuelan por los diáfanos aires tropicales y bichos que reptan por las obscuridades del intestino de los cerdos, que viven a decenas de grados bajo cero en los casquetes polares o a temperaturas cercanas a la ebullición del agua en las bocas de fuentes termales, que pesan menos de un miligramo o que desplazan ciento cincuenta toneladas, que atraviesan el Atlántico a nado o pasan su existencia enclaustrados en la grieta de una roca, organismos que tienen savia, hemolinfa o sangre, que observan con ojos una realidad estereoscópica y a colores o que no tienen la menor sensibilidad a la luz, que pueden consumir hidrocarburos de petróleo o que se intoxicarían con ellos, que siguen desde hace cientos de millones de años sin cambiar casi su estructura o que adoptaron la actual hace menos de un siglo, que son hembras o machos, que celebran el Día de las Madres o que las devoran en cuanto nacen, que meditan sobre metafísica o que no tienen siquiera una neurona. Pero, a pesar de esas diferencias tan extremas, todos ellos comparten la característica de ser mortales.
I. LA MUERTE DE LAS CÉLULAS
SEGÚN COMO SE LO MIRE, HAY ORGANISMOS INMORTALES
Hay organismos como las bacterias, levaduras y amebas, que están formados por una sola célula, y que son virtualmente inmortales. Por supuesto podemos matarlos usando antibióticos, hirviendo el caldo en que viven, o calentando a 200ºC las gasas e instrumentos de cirugía en cuyos resquicios se podrían haber metido. Pero si bien puede morir por esas causas ajenas a su funcionar biológico, normalmente un organismo unicelular no muere: cumplido su ciclo vital, simplemente se divide en dos hijas que continúan viviendo y no queda ningún "cadáver". Algo así como si tu abuela no hubiera muerto, sino que se hubiera dividido en tu mamá y tu tía. Cuando en cambio una célula forma parte de un organismo multicelular, su destino final no es necesariamente el dividirse en dos hijas, sino que puede morir programadamente.
LOS CÓDIGOS DE LA VIDA
Las células contienen larguísimas moléculas de ADN, enroscadas una sobre otra como si se tratara de un collar de dos cadenas que giran sobre ellas mismas, constituido por piedras preciosas.
Ahora conviene abandonar la analogía, porque el ADN no contiene gemas preciosas, sino moléculas llamadas Adenina, Tímida, Gitocina y Guanina, pero que obedecen las mismas reglas de ensarte y complementariedad (A con T y C con G). Tampoco hay joyeros moleculares, sino que la tarea está a cargo de varias enzimas y de una hueste de moléculas ayudantes, en cuyo detalle no nos detendremos. También conviene tener en cuenta que en nuestro ejemplo nos hemos limitado a fragmentos muy breves de una larguísima doble cadena, y que si el ADN estuviera hecho realmente de piedras preciosas llegaría al cielo; pero por suerte las ATCG son tan pequeñas que todo el ADN de una célula cabe enrollado en su núcleo.
Es fácil advertir que, si separamos las dos cadenas, se las damos a dos joyeros, y les pedimos que hagan una cadena complementaria a la que le entregamos, obedeciendo siempre la regla de enfrentar A con T y C con G, el artesano al que le demos la cadena 1 nos hará la complementaria 2, y al que le entreguemos la 2 nos enhebrará la complementaria 1. Algo parecido hacen las células con sus cadenas de ADN cuando se dividen: separan sus dos cadenas de ADN y hacen una copia complementaria de cada una, de modo que las dos células hijas reciben réplicas exactas de las que tenía la madre. Gracias a este legado de generación celular en generación celular, el huevo fecundado da origen a todas las células del organismo, que tienen por eso exactamente el mismo mensaje inscrito en el ADN.
Resumiendo: el ADN tiene codificados los genes que especifican los péptidos que los ribosomas habrán de fabricar. La célula tiene luego todo un aparato de organelos subcelulares y enjambres de enzimas que actúan sobre los diversos péptidos, agregándoles y quitándoles azúcares, lípidos, etcétera, y los convierten en proteínas que controlan todas las reacciones químicas de las que depende la vida y constituyen piezas clave del andamiaje y maquinaria celular.
¿CÓMO SE IDENTIFICA AL GENE QUE CODIFICA UNA PROTEÍNA DETERMINADA?
Los biólogos moleculares enfrentan básicamente tres situaciones. A veces conocen una proteína y necesitan encontrar el gene que la codifica en la molécula de ADN; otras veces conocen una característica de un bicho o una planta. Pero hay una tercera situación, en la que se las ingenian para anular un gene, para ver qué función celular se pierde, como cuando jugamos con las llaves de luz para ver si con ello encendemos un reflector de la sala o apagamos el farol del jardín. De ahí en adelante se lanzan a buscar la proteína codificada por el gene en cuestión y que tiene a su cargo dicha función.
Es fácil imaginar entonces la sorpresa de los biólogos cuando, encendiendo y apagando genes, encontraron unos que tienen como función matar a la célula. Así de simple: hay genes, que han pasado a llamarse genes de la muerte. En la nomenclatura de la genética se llama mutación letal a la que, por afectar un gene esencial no permite se geste un individuo vivo. En este caso, la mutación es letal, pero el gene en cuestión no es un gene de la muerte, porque reservamos este nombre para los que intervienen en la muerte celular programada, cuya función específica es indicarle a la célula cómo construir las armas moleculares necesarias para suicidarse.
Pero estos conceptos todavía no nos permiten entender por qué se deben suicidar esas células, de modo que tendremos que introducir más información acerca de los genes.
¿POR QUÉ EN UN MISMO ORGANISMO HAY CÉLULAS DIFERENTES?
Todas las células somáticas de un organismo (las que no son gametas) tienen un genoma idéntico, es decir, todas tienen genes que codifican las mismas proteínas. Entonces ¿por qué unas células se convirtieron en neuronas, otras en osteocítos, otras en hepatocitos y otras en fibras musculares? La explicación es análoga a la que resultaría de observar que, si bien a varias personas les regalan el mismo manual de carpintería, unas eligen fabricarse mesas, otras camas, otras escaleras... y terminan así con un mobiliario diferente. Es decir, todas las células somáticas de un organismo como el nuestro tienen los genes para hacer hemoglobina, rodopsina, insulina, pero no todas las expresan, porque unas eligen expresar el que codifica hemoglobina, otras el que expresa rodopsina y algunas el que específica insulina. Y eso no es todo: algunos tipos de células leen y sintetizan unas pocas moléculas de la proteína codificada por un gene, y otras expresan ese mismo gene millones y millones de veces
Esta restricción del número de tipos celulares se explica porque los genes no tienen libertad de expresión: hay repertorios, programas genéticos, en los que un gene sólo se puede expresar a condición de que antes se hayan expresado algunos otros, y que, una vez que se expresan, provocan la expresión de otros más de la cascada programática, como restaurantes que sólo sirven menús fijos. De lo contrario "no tendría sentido" que se leyeran los genes para fosforilar una proteína, si no se leen también los que ordenan construir la proteína que se ha de fosforilar, o que se han de pegar a tal subunidad, o que habrán de integrarse para formar cierto organelo.
Los bebés son "pluripotentes", pero luego, al crecer, uno puede elegir la carrera de derecho, su hermano dedicarse al levantamiento de pesas y su hermana consagrarse a la danza; eligen así destinos que implican paquetes coordinados de miles de acciones, que al cabo de un tiempo los harán diferentes en sus funciones y hasta en la estructura de sus cuerpos. Pero esas "diferenciaciones" podrían no ser finales, sino que a los cuarenta y cinco años el que se recibió de abogado se embarca en una carrera política, el forzudo se hace narcotraficante y la danzarina ama de casa. También las células pueden lanzarse a nuevas ramas diferenciales, pero ya no conservan la pluripotencia que tenía el huevo fecundado del que derivan.
GENES QUE SE ELIMINAN Y GENES QUE SE CONSERVAN
De pronto aparece un nuevo gene, en general por modificación o combinaciones
...