ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Series Finitas


Enviado por   •  2 de Diciembre de 2012  •  1.909 Palabras (8 Páginas)  •  773 Visitas

Página 1 de 8

Serie finitas

Series y sucesiones

Sucesión es una secuencia ordenada de números u otras cantidades, y serie es la suma de todos los términos de dicha secuencia.

Una sucesión se representa como a1, a2 …, an … Las a son números o cantidades, distintas entre sí o no; a1 es el primer término, a2el segundo, y así sucesivamente. Si el último término aparece en la expresión, es una sucesión finita; si no aparece es infinita. Una sucesión es definida o establecida si y sólo si existe una regla dada que determina el término n-ésimo correspondiente a un n entero positivo; esta regla puede estar dada por la fórmula del término n-ésimo. Por ejemplo, todos los números enteros positivos, en su orden natural, forman una secuencia infinita definida por la fórmula an=n. La fórmula an = n2 define la sucesión 1, 4, 9, 16 … La regla de empezar con 0 y 1 y calcular cada término como la suma de los dos términos anteriores define la sucesión 0, 1, 1, 2, 3, 5, 8, 13 …; que se conoce como sucesión de Fibonacci.

Entre los tipos más importantes de sucesiones se encuentran las sucesiones aritméticas (también conocidas como progresiones aritméticas), en las que la diferencia entre dos términos sucesivos es constante; y las sucesiones geométricas (también conocidas como progresiones geométricas), en las que la razón entre dos términos sucesivos es constante. Un ejemplo de sucesiones se encuentra al intentar calcular los intereses de un cierto capital. Si el dinero se invierte al interés simple del 8%, entonces en n años la cantidad de dinero inicial P se ha convertido en an = P + n × (0,08)P. El mismo producto (0,08)P se añade cada año, por lo que las cantidades an forman una progresión aritmética. Si el interés es compuesto, las cantidades ahorradas forman una progresión geométrica, gn = P × (0,08)n. En ambos casos, está claro que an y gn llegarán a ser mayores que cualquier número entero imaginable.

Sin embargo, los términos de una sucesión no tienen por qué crecer siempre. Por ejemplo, a medida que n crece, la sucesión an = 1/n se acerca a 0, que es su límite; y bn = A + B/n tiende hacia A. En este tipo de sucesiones, existe un número finito L tal que, dada una tolerancia e, los valores de la sucesión difieren de L en una cantidad menor que e cuando n es lo suficientemente grande. Por ejemplo, en el caso de la sucesión 2 + (-1)n/2n, el límite es L = 2. Incluso si se toma una e tan pequeña como 1/10.000, se puede comprobar que para n mayores que 5.000 la diferencia entre an y L es menor que e. El número L se denomina límite de la sucesión, y aunque algunos de los términos de la sucesión son mayores y otros menores que L, los términos finalmente se agrupan alrededor de L cada vez más cerca. Cuando una sucesión tiene un límite L, se dice que converge hacia L. Para la sucesión an, por ejemplo, esto se escribe como lim an = L, que se lee “el límite de an cuando n tiende hacia infinito es L“.

El término serie designa la siguiente suma, a1 + a2 + … + an, o a1 + a2 + … + an + …, que es la suma de los términos de una sucesión. Una serie es finita o infinita dependiendo de si la correspondiente secuencia de términos es finita o infinita.

La sucesión s1 = a1, s2 = a1 + a2, s3 = a1 +a2 + a3, …,sn = a1 + a2 + … + an, …, se denomina sucesión de sumas parciales de la serie a1 + a2 + … + an + … La serie es convergente (divergente) si la sucesión de sumas parciales converge (diverge). Una serie de términos constantes es aquella en la que los términos son números; una serie funcional es aquella en la que los términos son funciones de una o más variables. Un caso especial es la serie de potencias, que es la serie a0 + a1(x - c) + a2(x - c)2 + … + an(x - c)n + …, en la que la c y la a son constantes. Para la serie de potencias, el problema es encontrar los valores de x para los que la serie es convergente. Si la serie converge para una cierta x, entonces el conjunto de todas las x para las que la serie converge es un punto o un intervalo. La teoría básica de la convergencia fue estudiada alrededor de 1820 por el matemático francés Augustin Louis Cauchy.

La teoría y el uso de las series infinitas son importantes en prácticamente todas las ramas de las matemáticas tanto, puras como aplicadas.

Progresión aritmética

Secuencia de números que crecen o decrecen en una cantidad fija llamada razón, de manera que cualquier número de la sucesión es la media aritmética o término medio del número anterior y el siguiente. Los números naturales 1, 2, 3, 4 forman una progresión aritmética de razón 1. Los números 22, 19, 16, 13, 10, 7 están en progresión aritmética de razón -3. Para calcular la suma de los términos de una progresión aritmética, se multiplica la suma del primer y el último término por la mitad del número de términos. De este modo, la suma de los diez primeros números naturales es (1 + 10) × (10 : 2) = 55.

Usando el lenguaje algebraico, una progresión aritmética se escribe como a0, a0 + d, a0 + 2d, a0 + 3d, … donde tanto el término a0—conocido como el término cero— como la razón d son números arbitrarios. El término enésimo de esta progresión—generalmente escrito como an— está dado por la siguiente fórmula: an = a0 + n d. La suma de los términos de a0 a an es: 1 (n + 1) (a0 + an).

Progresión geométrica

Sucesión de números tales que la proporción entre cualquier término (que no sea el primero) y el término que le precede es una cantidad fija llamada razón. Por ejemplo, la secuencia de números 2, 4, 8, 16, 32, 64, 128 es una progresión geométrica con razón 2; y 1, 1, 3, 7, 9, >, … (1)i, es una progresión geométrica con razón 1. La primera es una progresión geométrica finita con siete términos; la segunda es una

...

Descargar como (para miembros actualizados)  txt (11.2 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com