TRANSFORMADA DE LAPLACE.
DannMhApuntes23 de Agosto de 2016
20.428 Palabras (82 Páginas)342 Visitas
TRANSFORMADA DE LAPLACE
[pic 1]
[pic 2]
[pic 3]
Sea [pic 4]
- [pic 5]
La transformada de Laplace de [pic 6]
[pic 7]
[pic 8]
Ejemplo:
- Hallar cuando c=cte[pic 9]
[pic 10]
[pic 11][pic 12][pic 13]
s>0 [pic 14]
- [pic 15]
- [pic 16]
- [pic 17]
- cuando [pic 18][pic 19]
[pic 20]
[pic 21]
[pic 22]
[pic 23]
[pic 24]
- [pic 25]
[pic 26]
[pic 27]
[pic 28]
[pic 29]
- si a=cte[pic 30]
[pic 31]
s>a; s-a>0 o s>a[pic 32]
- si w=cte[pic 33]
[pic 34]
[pic 35]
- [pic 36]
[pic 37]
[pic 38]
- Demostrar [pic 39]
[pic 40][pic 41]
[pic 42]
- [pic 43]
[pic 44]
- [pic 45]
=[pic 46][pic 47]
7. Hallar y sabemos que [pic 48][pic 49][pic 50]
[pic 51]
[pic 52]
[pic 53]
Real= Imaginario= [pic 54][pic 55]
- Hallar [pic 56]
Sabemos que entonces[pic 57]
[pic 58]
[pic 59]
[pic 60]
[pic 61]
- [pic 62]
[pic 63]
[pic 64]
[pic 65]
- cuando [pic 66][pic 67]
[pic 68]
[pic 69]
- cuando [pic 70][pic 71]
[pic 72]
[pic 73]
[pic 74]
[pic 75]
- cuando [pic 76][pic 77]
[pic 78][pic 79]
[pic 80]
[pic 81]
[pic 82]
[pic 83]
TRANSFORMADA INVERSA
[pic 84]
[pic 85]
[pic 86]
[pic 87]
[pic 88]
[pic 89]
Ejemplos:
- [pic 90]
- [pic 91]
- [pic 92]
[pic 93]
- [pic 94]
- [pic 95]
- [pic 96]
- [pic 97]
- [pic 98]
- [pic 99]
- [pic 100]
- [pic 101]
- [pic 102]
- [pic 103]
- [pic 104]
- [pic 105]
- [pic 106]
- [pic 107]
- [pic 108]
Sabemos que [pic 109]
[pic 110]
[pic 111]
[pic 112]
- [pic 113]
Sabemos que [pic 114]
[pic 115]
[pic 116]
[pic 117]
PROPIEDAD TEOREMA DE TRASLACION
- [pic 118][pic 119]
[pic 120]
- a=3i[pic 121]
[pic 122]
- [pic 123]
- [pic 124]
[pic 125][pic 126]
- [pic 127]
- [pic 128]
- [pic 129]
- [pic 130]
- [pic 131]
- [pic 132]
TRANSFORMADA DE LAPLACE DE LA DERIVADA
[pic 133]
- Demostrar [pic 134]
[pic 135]
[pic 136]
[pic 137]
[pic 138]
[pic 139]
[pic 140]
- Demostrar [pic 141]
[pic 142]
[pic 143]
[pic 144]
[pic 145]
[pic 146]
[pic 147]
…
[pic 148]
- Usar la transformada de la derivada para hallar ; si sabemos que [pic 149][pic 150]
[pic 151]
[pic 152][pic 153]
[pic 154]
[pic 155]
- Hallar ; si [pic 156][pic 157]
[pic 158]
[pic 159][pic 160]
[pic 161]
[pic 162]
[pic 163]
- Hallar la transformada de la derivada para hallar [pic 164]
[pic 165]
[pic 166][pic 167][pic 168]
[pic 169]
[pic 170]
[pic 171]
[pic 172]
[pic 173]
- Hallar la transformada de la derivada para hallar [pic 174]
[pic 175][pic 176][pic 177]
[pic 178]
[pic 179]
[pic 180]
[pic 181]
TRANSFORMADA DE LA INTEGRAL
[pic 182]
- Demostrar [pic 183]
[pic 184]
[pic 185]
[pic 186]
[pic 187]
[pic 188]
[pic 189]
[pic 190]
[pic 191]
[pic 192]
- Hallar f(t), usando la transformada de la integral:
- [pic 193]
[pic 194]
[pic 195]
[pic 196]
[pic 197]
[pic 198]
[pic 199]
[pic 200]
- [pic 201]
[pic 202]
[pic 203]
[pic 204]
[pic 205]
[pic 206]
[pic 207]
[pic 208]
- [pic 209]
[pic 210]
[pic 211]
[pic 212]
[pic 213]
[pic 214]
[pic 215]
APLICACIONES (ECUACIONES DIFERENCIALES)
- Resolver: [pic 216]
[pic 217]
[pic 218]
[pic 219]
[pic 220]
[pic 221]
[pic 222]
[pic 223]
[pic 224]
- [pic 225]
[pic 226]
[pic 227]
[pic 228]
[pic 229]
[pic 230]
[pic 231]
[pic 232]
[pic 233]
[pic 234]
[pic 235]
[pic 236]
DERIVADA DE LA TRANSFORMADA
[pic 237]
Donde: [pic 238]
Para [pic 239]
[pic 240]
F(s)= [pic 241]
[pic 242]
[pic 243]
Para [pic 244]
[pic 245]
[pic 246]
[pic 247]
Ejemplos
- [pic 248]
[pic 249]
[pic 250]
[pic 251]
[pic 252]
[pic 253]
- [pic 254]
[pic 255]
[pic 256]
[pic 257]
[pic 258]
...