ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Tipos De Matrices


Enviado por   •  17 de Septiembre de 2013  •  Ensayos  •  1.611 Palabras (7 Páginas)  •  363 Visitas

Página 1 de 7

MATRICES

Una matriz es una tabla ordenada de escalares de la forma xyz

Los términos horizontales son las filas de la matriz y los verticales son sus columnas.

Una matriz con m filas y n columnas se denomina matriz m por n, o matriz m  n.

Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ...

Ejemplo:

Donde sus filas son (1, -3, 4) y (0, 5, -2) y sus

TIPOS DE MATRICES

:

Matrices cuadradas

Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n  n es de orden n y se denomina matriz n-cuadrada.

Ejemplo: Sean las matrices

Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

Matriz identidad

Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La traza de A, escrito tr A, es la suma de los elementos diagonales.

La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como matriz identidad (o unidad). Para cualquier matriz A,

A• I = I •A = A.

Matrices triangulares

Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas bajo la diagonal principal son iguales a cero. Así pues, las matrices:

Son matrices triangulares superiores de órdenes 2, 3 y 4.

Matrices diagonales

Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22, ..., dnn ). Por ejemplo,

Son matrices diagonales que pueden representarse, respectivamente, por

diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).

TRASPUESTA DE UNA MATRIZ

La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT.

Así, la traspuesta de

En otras palabras, si A = (ai j ) es una matriz m  n, entonces AT = es la matriz n  m. La trasposición de una matriz cumple las siguientes propiedades:

1. (A + B)T = AT + BT.

2. (AT)T = A.

3. (kA)T = kAT (si k es un escalar).

4. (AB)T = BTAT.

Matrices simétricas

Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica,

si AT = -A.

Ejemplo:

Consideremos las siguientes matrices:

Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.

Para B los elementos simétricos son opuestos entre sí, de este modo B es antisimétrica.

A simple vista, C no es cuadrada; en consecuencia, no es ni simétrica ni antisimétrica.

Matrices ortogonales

Se dice que una matriz real A es ortogonal, si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente cuadrada e invertible, con inversa A-1 = AT.

Consideremos una matriz 3  3 arbitraria:

Si A es ortogonal, entonces:

Matrices normales

Una matriz es normal si conmuta con su traspuesta, esto es, si AAT = ATA. Obviamente, si A es simétrica, antisimétrica u ortogonal, es necesariamente normal.

Ejemplo:

Puesto que AAT = ATA, la matriz es normal

SUMA Y RESTA DE MATRICES

Para poder sumar o restar matrices, éstas deben tener el mismo número de filas y de columnas. Es decir, si una matriz es de orden 3  2 y otra de 3  3, no se pueden sumar ni restar. Esto es así ya que, tanto para la suma como para la resta, se suman o se restan los términos que ocupan el mismo lugar en las matrices.

Ejemplo:

Para sumar o restar más de dos matrices se procede igual. No necesariamente para poder sumar o restar matrices, éstas tienen que ser cuadradas.

Ejemplo:

...

Descargar como (para miembros actualizados)  txt (7.7 Kb)  
Leer 6 páginas más »
Disponible sólo en Clubensayos.com