Doc. Historia
16 de Abril de 2015
2.988 Palabras (12 Páginas)376 Visitas
NOCIONES ESPACIALES: ENFOQUES
Relaciones espaciales fundamentales:
-Se refiere al conocimiento de los conceptos espaciales en abstracto
-Utiliza el espacio como vehículo para estructurar el conocimiento y solucionar problemas
-No se considera el espacio como entorno o espacio geográfico concreto
En este enfoque se ubican los trabajos de Piaget e Inhelder
Cognición ambiental o conocimiento ambiental
-Se refiere a comprender el conocimiento que el niño tiene sobre espacios concretos y específicos (casa, escuela, barrio, etc). Es decir su entorno.
Diferenciación entre lo físico y lo geométrico
Una de las dificultades mayores para la concepción de los contenidos de Geometría es la confusión entre lo físico y lo geométrico: cuando hablamos de espacios y planos en Matemática, no nos referimos en ningún momento a espacios físicos ni a planos físicos. Un rectángulo se concibe, solamente, en un plano geométrico y un prisma se concibe, solamente, en un espacio geométrico. Y el plano geométrico y el espacio geométrico solo existen en nuestra mente: son ideas.
Para facilitar el proceso de conceptualización se emplean, habitualmente, representaciones de esas ideas; pero al no aclarar que se trata de representaciones, el niño termina confundiendo una raya en su cuaderno con una recta, un trozo de cartulina con un rectángulo, un ladrillo (o un cuerpo de madera, lo mismo da) con un prisma.
Como al entrar en el terreno de la Geometría nos evadimos de lo concreto, enseñar Geometría en el nivel escolar significa que tenemos que ayudar a concebir:
• formas geométricas que tienen tres dimensiones: por ejemplo, una forma tal que tenga la forma que muestran todas las pelotas, o todos los anillos, o todos los ladrillos,
• formas que tengan dos dimensiones: por ejemplo, las sombras, las manchas, las huellas, las “caras” que se desprenden de las figuras de tres dimensiones,
• figuras geométricas que tengan una sola dimensión: por ejemplo, los bordes de las figuras de dos dimensiones, los pliegues, los filos, las arrugas, es decir lo que llamamos líneas y
• figuras geométricas que no tengan ninguna dimensión: por ejemplo, los vértices, los cruces, los comienzos de las líneas, es decir lo que llamamos puntos, en los que no podemos determinar ni largo, ni ancho ni altura.
¿Cómo lograr que el niño conciba mentalmente estos elementos geométricos? Esa es nuestra tarea.
Objetivo General: Que los/as niños/as se aproximen a los conocimientos geométricos, apropiándose de ellos y aplicándolos en su vida cotidiana.
Objetivos Específicos:
1. Reconocer, identificar y representar cuerpos geométricos así como figuras geométricas desprendidas de estos.
2. Integrar y usar unidades de medida correspondientes al grado.
3. Aplicar los conocimientos adquiridos en la resolución de problemas de ejercitación y problemas de la vida cotidiana.
Procedimientos: Observar, identificar, reconocer, clasificar, representar, medir, comparar, cuantificar, ubicar, investigar, construir, dibujar, trazar, comentar, exponer, etc.
Estrategias: Apelar a las ideas previas. Promover la participación. Desarrollar el aprendizaje a partir del error. Desarrollar la Z.D.P. Problematizar conocimientos. Atender a la diversidad. Apelar a los aprendizajes constructivos. Promover vínculos positivos.
SECUENCIA DE ACTIVIDADES
1er. paso: Figuras en el espacio
Como en el inicio nuestro abordaje será con representaciones, es correcto comenzar por las representaciones que menos distorsionan las características geométricas, o sea partiremos de manipular cuerpos físicos en el espacio real, sabiendo que el objetivo es la concepción de las figuras geométricas en el espacio geométrico de tres dimensiones.
A través de la visión, del tacto, de la construcción, del movimiento de esos cuerpos, de las deformaciones y transformaciones que podemos realizar en ellos, los niños irán descubriendo formas (tridimensionales) que se repiten, aunque cambien aspectos en ellas como el material, el tamaño, el color. Cajas de todo tipo y tamaño van a acercarlos a la idea de la forma prismática, que es en lo que se parecen todas ellas; pelotas y bolitas los llevan a ir concibiendo una forma determinada, que es lo que tienen en común todas ellas. El inicio será, pues, distinguir esas formas comunes para luego identificar si otros ejemplos están comprendidos en una clase u otra. A través del enriquecimiento del lenguaje de los niños con nombres geométricos que vamos dando (caras, curvo, plano, bordes o aristas, puntas o vértices, etc.) pasaremos de lo simplemente intuitivo a formas razonadas de la exploración.
Una actividad fundamental de esta primera aproximación es la medición. Para ello prepararemos un ángulo triedro de una caja de zapatos, marcando en los tres ejes columnas centimetradas. De este modo al colocar cualquier objeto (mates, manzanas, libros, teléfonos, ladrillos, etc.) acercándolo a ese ángulo podrán ver que alcanza una determinada altura, un determinado largo y un determinado ancho.
Si allí arrimamos una pelota los niños verificarán que ¡las dimensiones que alcanza en los ejes son iguales!
2o. paso: Figuras en el plano
El plano geométrico permite representar las figuras de dos dimensiones como polígonos, círculos, elipses, etc.
Si observamos un plano físico (la cara de un vidrio, la pantalla del televisor, el piso de una habitación, la carilla de una hoja de cuaderno, etc.) vemos que podemos aislar en él una parte, encerrándola con una línea, o vemos que podemos teñir una parte de él, manchándolo con una tinta, o vemos que podemos proyectar en él una sombra al interponer un objeto en un rayo de luz que ilumina el plano.
¿En qué se diferencia la mancha o la sombra del ladrillo o la pelota?
Si yo pudiera recortarlas y trasladarlas a mi caja de medidas, veríamos que solo tienen 2 dimensiones: no tienen altura. Pero sí podemos cuantificar en ellas un largo y un ancho.
Las formas que pueden tener las figuras en el plano son infinitas, pero nos interesan especialmente algunas de las más frecuentes. Por eso empezamos a estudiar cómo están cerradas. Allí procuraremos que los niños identifiquen aquellas figuras cerradas por líneas rectas y las cerradas por líneas curvas.
Se trata de llenar hojas o recortar papeles con las más diversas formas para tener un conjunto muy numeroso que nos permita hacer esa primera clasificación: figuras en el plano cerradas por líneas rectas y figuras en el plano cerradas por líneas curvas. Este paso de la secuencia puede profundizarse en función del nivel con el que estamos trabajando, yendo desde la identificación de triángulos, cuadrados, rectángulos y círculos a análisis más profundos como explorar variantes en los polígonos como la cantidad de lados y el carácter de formas convexas o no-convexas dado por la existencia de ángulos mayores que el llano.
También en este paso corresponde la ampliación del vocabulario para facilitar el proceso de conceptualización: lado, diagonal, ángulos, arco, etc.
Sea cual sea la figura de dos dimensiones que consideremos será fácil para los niños distinguir los puntos del contorno de la misma, los puntos interiores al contorno y los puntos exteriores, que pertenecen al plano pero no a la figura.
3er. paso: Las líneas
Un nuevo material, confeccionado por el maestro, permitirá la distinción entre una superficie y una línea. Se trata de preparar en cartón un hueco (por ejemplo un cuadrado de 2 cm de lado) o usar plantillas que tienen figuras huecas o el centro de un CD. Presionando este material sobre un papel, el niño rayará en el interior del hueco hasta que quede cubierto todo ese espacio.
Cerca de ese trabajo y volviendo a presionar el material el niño contorneará el hueco.
¿Cuál es la diferencia entre un trabajo y el otro? En uno llenó una superficie, en el otro trazó una línea.
Cuando la línea es cerrada encierra una superficie, pero no todas las líneas son cerradas.
Será entonces la ocasión de diferenciar una líneas de otras y, trabajando con las líneas rectas verá que a veces se cruzan (o se cruzarían si las siguiera) y a veces no se cruzan y, más adelante que, si se cruzan, a veces se pueden cruzar como lo hacen habitualmente las calles, formando esquinas iguales. Munidos de tablitas los niños explorarán durante largos ratos, acerca de las distintas posiciones de dos rectas en un plano.
¿Cuál es el lenguaje que permite avances en la conceptualización de las líneas?
La expresión segmento de recta debe ser incorporada rápidamente, para que el niño diferencie la recta, que sigue hasta el infinito en los dos sentidos, de una parte de la misma que tiene principio y fin, que son dos puntos que aíslan esa parte de ella. Por ejemplo: las diagonales de un polígono son segmentos de recta que comienzan en un vértice y terminan en otro vértice; las cuerdas que dividen a un círculo son segmentos de recta que comienzan en un punto de la curva y terminan en otro de la misma curva, etc.
4º. paso: La calesita vuelve al revés
Hemos ido, a través de representaciones, de las figuras en el espacio a las figuras en el plano y éstas nos permitieron llegar a conocer las líneas (que aíslan partes del plano) y los puntos (que aíslan partes de las líneas).
¿Podemos ahora plantear el camino inverso?
Si en todo este
...