ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Controlador Logico Programable

jonathandejesus1 de Mayo de 2013

2.696 Palabras (11 Páginas)432 Visitas

Página 1 de 11

PLC

En este post nos referimos al Concepto de Controladores Lógicos Programables (PLC), otra acepción al termino PLC es Power Line Communications o Comunicación por Líneas Electricas, en este post nos referimos al término Controlador Lógico Programable. En otros post continuaremos con la acepción del término Power Line Communications que ya habiamos abordado el mes anterior, con las explicaciones sobre comunicación por redes electricas. Para ir explicando el otro significado de Plc nos referimos en este post como “Controlador Lógico Programable”

PLC:

Dispositivo electrónico muy usado en automatización industrial. Un PLC controla la lógica de funcionamiento de maquinas, plantas y procesos industriales, procesan y reciben señales digitales y analógicas y pueden aplicar estrategias de control. Programmable Logic Controller o Controlador lógico programable.

Se trata de un equipo electrónico, que, tal como su mismo nombre lo indica, se ha diseñado para programar y controlar procesos secuenciales en tiempo real. Por lo general, es posible encontrar este tipo de equipos en ambientes industriales

Los PLC sirven para realizar automatismos, se puede ingresar un programa en su disco de almacenamiento, y con un microprocesador integrado, corre el programa, se tiene que saber que hay infinidades de tipos de PLC. Los cuales tienen diferentes propiedades, que ayudan a facilitar ciertas tareas para las cuales se los diseñan.

Para que un PLC logre cumplir con su función de controlar, es necesario programarlo con cierta información acerca de los procesos que se quiere secuenciar. Esta información es recibida por captadores, que gracias al programa lógico interno, logran implementarla a través de los accionadores de la instalación.

Un PLC es un equipo comúnmente utilizado en maquinarias industriales de fabricación de plástico, en máquinas de embalajes, entre otras; en fin, son posibles de encontrar en todas aquellas maquinarias que necesitan controlar procesos secuenciales, así como también, en aquellas que realizan maniobras de instalación, señalización y control.

Dentro de las funciones que un PLC puede cumplir se encuentran operaciones como las de detección y de mando, en las que se elaboran y envían datos de acción a los pre-accionadores y accionadores. Además cumplen la importante función de programación, pudiendo introducir, crear y modificar las aplicaciones del programa.

Dentro de las ventajas que estos equipos poseen se encuentra que, gracias a ellos, es posible ahorrar tiempo en la elaboración de proyectos, pudiendo realizar modificaciones sin costos adicionales. Por otra parte, son de tamaño reducido y mantenimiento de bajo costo, además permiten ahorrar dinero en mano de obra y la posibilidad de controlar más de una máquina con el mismo equipo. Sin embargo, y como sucede en todos los casos, los controladores lógicos programables, o PLC’s, presentan ciertas desventajas como es la necesidad de contar con técnicos calificados y adiestrados específicamente para ocuparse de su buen funcionamiento.

Manejo de los temporizadores On Delay y Off Delay - Laboratorio Nº 3

Curso: Controles Eléctricos y Automatización

Facultad: Ingeniería Electrónica UNMSM

Ciclo: 2011-I

1.- Objetivos

• Familiarizar al alumno en el uso de los circuitos temporizadores.

• Reconocer los diferentes tipos de temporizadores.

• Realizar esquemas eléctricos de los problemas propuestos.

2.- Requerimientos de herramientas y materiales

• Destornillador plano o estrella

• Alicate de punta

• Multímetro

• Extensión

• Cinta aislante

3.- Parte Experimental

3.1.- Manejo de un piloto luminoso mediante un temporizador ON DELAY - Implemente el siguiente circuito

Elementos utilizados:

• 1 contactor

• 1 pulsador NA

• 1 temporizador ON DELAY

• 1 piloto luminoso

Explique su funcionamiento:

Tal como se pudo observar en la experiencia de laboratorio, el temporizador ON DELAY es un módulo que se engancha en la parte superior del contactor, para que trabaje con este de manera conjunta. Si traducimos al español ON DELAY, significaría retardo en encendido, pues es así como trabaja este dispositivo, empezando a trabajar una vez que la bobina del contactor haya sido energizada. Es desde este momento que el temporizador comienza a contar hasta el tiempo prefijado por el ajuste de la perilla que se encuentra en la parte superior del mismo, creando un retardo, que al finalizar cerrará su contacto normalmente abierto y abrirá el normalmente cerrado, hasta que la bobina de el contactor se encuentre energizada.

Como se pudo observar, este dispositivo permite activar o desactivar algún actuador luego de un período de tiempo preestablecido, permitiéndole al circuito realizar alguna tarea antes de esta acción.

3.2.- Manejo de un piloto luminoso mediante un temporizador OFF DELAY - Implemente el siguiente circuito

Elementos utilizados:

• 1 contactor

• 1 pulsador NA

• 1 temporizador OFF DELAY

• 1 piloto luminoso

Explique su funcionamiento:

Al igual que en el caso anterior, este dispositivo es también un módulo que se engancha en la parte superior del contactor. Si traducimos al español OFF DELAY, significaría retardo en apagado, lo que indicaría, que comenzará a contar una vez que se haya retirado la energía de la bobina del contactor, hasta el tiempo prefijado, cerrando su contacto normalmente abierto y abriendo el normalmente cerrado.

Este dispositivo, podría ser empleado con la finalidad de desactivar o activar alguna acción final después de haber desconectado la bobina del contactor.

3.3.- Problema

Se desea controlar un piloto luminoso para que realice la siguiente secuencia.

Para hacer que el piloto luminoso realice la secuencia anteriormente mostrada hago uso de dos temporizadores ON Delay, cada uno calibrado para que actúe después de 5 segundos. Para tal efecto los conectamos de la siguiente manera:

Al energizarse el circuito, la primera bobina K1 (asociada al temporizador 1) se alimenta a través del contacto NC del segundo temporizador, donde empezará a contar hasta llegar a los cinco segundos. Asimismo, paralelo a la alimentación colocamos en serie un contacto NC del primer temporizador con la lámpara H1, la cual permanecerá encendida hasta que el primer temporizador termine de contar los 5 segundos.

Al finalizar el conteo del primer temporizador, se abrirá el contacto que alimenta la lámpara pasando del estado alto a bajo, y a su vez se cerrará el segundo contacto NA del primer temporizador, que alimentará a la bobina K2 (asociada al temporizador 2).

Una vez que haya sido alimentada la bobina K2, el segundo temporizador comenzará a contar hasta los cinco segundos, donde abrirá el contacto NC del segundo temporizador, donde momentáneamente desconectará a la primera bobina y por consiguiente a la segunda, inmediatamente el contacto asociado a la primera bobina se volverá a cerrar, reiniciándose el proceso.

Cabe señalar, que el circuito se diagramó y simuló en el software CADe SIMU, el cual puede ser descargado desde el siguiente enlace http://personales.ya.com/canalPLC/cade_sim.htm

4.- Cuestionario

4.1.- Esquematice y explique el funcionamiento del circuito estrella – triángulo para arranque de un motor

Sólo es posible utilizar este modo de arranque en motores en los que las dos extremidades de cada uno de los tres devanados estatóricos vuelvan a la placa de bornes. Por otra parte, el bobinado debe realizarse de manera que el acoplamiento en triángulo corresponda con la tensión de la red: por ejemplo, en el caso de una red trifásica de 380 V, es preciso utilizar un motor bobinado a 380 V en triángulo y 660 V en estrella.

El principio consiste en arrancar el motor acoplando los devanados en estrella a la tensión de la red, lo que equivale a dividir la tensión nominal del motor en estrella por raíz de 3.

La punta de corriente durante el arranque se divide por 3:

Is = 1,5 a 2,6 In

Donde:

In = Intensidad nominal

Is = Intensidad de arranque

Un motor de 380 V/660 V acoplado en estrella a su tensión nominal de 660 V absorbe una corriente raíz de 3 veces menor que si se acopla en triángulo a 380 V. Dado que el acoplamiento en estrella se realiza a 380 V, la corriente se divide nuevamente por raíz de 3. Por tanto, se divide por un total de 3.

El par de arranque se divide igualmente por 3, ya que es proporcional al cuadrado de la tensión de alimentación:

Td = 0,2 a 0,5 Tn

Donde:

Tn = Par nominal

Ts = Par de arranque

La velocidad del motor se estabiliza cuando se equilibran el par del motor y el par resistente, normalmente entre el 75 y 85% de la velocidad nominal. En ese momento, los devanados se acoplan en triángulo y el motor rinde según

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com