Distribucion
Enviado por carelis01 • 27 de Noviembre de 2013 • 2.551 Palabras (11 Páginas) • 197 Visitas
La distribución de frecuencia es la representación estructurada, en forma de tabla, de toda la información que se ha recogido sobre la variable que se estudia.
Variable Frecuencias absolutas Frecuencias relativas
(Valor) Simple Acumulada Simple Acumulada
x x x x x
X1 n1 n1 f1 = n1 / n f1
X2 n2 n1 + n2 f2 = n2 / n f1 + f2
... ... ... ... ...
Xn-1 nn-1 n1 + n2 +..+ nn-1 fn-1 = nn-1 / n f1 + f2 +..+fn-1
Xn nn S n fn = nn / n S f
Siendo X los distintos valores que puede tomar la variable.
Siendo n el número de veces que se repite cada valor.
Siendo f el porcentaje que la repetición de cada valor supone sobre el total
Veamos un ejemplo:
Medimos la altura de los niños de una clase y obtenemos los siguientes resultados (cm):
Alumno Estatura Alumno Estatura Alumno Estatura
x x x x x x
Alumno 1 1,25 Alumno 11 1,23 Alumno 21 1,21
Alumno 2 1,28 Alumno 12 1,26 Alumno 22 1,29
Alumno 3 1,27 Alumno 13 1,30 Alumno 23 1,26
Alumno 4 1,21 Alumno 14 1,21 Alumno 24 1,22
Alumno 5 1,22 Alumno 15 1,28 Alumno 25 1,28
Alumno 6 1,29 Alumno 16 1,30 Alumno 26 1,27
Alumno 7 1,30 Alumno 17 1,22 Alumno 27 1,26
Alumno 8 1,24 Alumno 18 1,25 Alumno 28 1,23
Alumno 9 1,27 Alumno 19 1,20 Alumno 29 1,22
Alumno 10 1,29 Alumno 20 1,28 Alumno 30 1,21
Si presentamos esta información estructurada obtendríamos la siguiente tabla de frecuencia:
Variable Frecuencias absolutas Frecuencias relativas
(Valor) Simple Acumulada Simple Acumulada
x x x x x
1,20 1 1 3,3% 3,3%
1,21 4 5 13,3% 16,6%
1,22 4 9 13,3% 30,0%
1,23 2 11 6,6% 36,6%
1,24 1 12 3,3% 40,0%
1,25 2 14 6,6% 46,6%
1,26 3 17 10,0% 56,6%
1,27 3 20 10,0% 66,6%
1,28 4 24 13,3% 80,0%
1,29 3 27 10,0% 90,0%
1,30 3 30 10,0% 100,0%
Si los valores que toma la variable son muy diversos y cada uno de ellos se repite muy pocas veces, entonces conviene agruparlos por intervalos, ya que de otra manera obtendríamos una tabla de frecuencia muy extensa que aportaría muy poco valor a efectos de síntesis. (Tal como se verá en la siguiente lección).
Distribuciones de frecuencia agrupada
Supongamos que medimos la estatura de los habitantes de una vivienda y obtenemos los siguientes resultados (cm):
Habitante Estatura Habitante Estatura Habitante Estatura
x x x x x x
Habitante 1 1,15 Habitante 11 1,53 Habitante 21 1,21
Habitante 2 1,48 Habitante 12 1,16 Habitante 22 1,59
Habitante 3 1,57 Habitante 13 1,60 Habitante 23 1,86
Habitante 4 1,71 Habitante 14 1,81 Habitante 24 1,52
Habitante 5 1,92 Habitante 15 1,98 Habitante 25 1,48
Habitante 6 1,39 Habitante 16 1,20 Habitante 26 1,37
Habitante 7 1,40 Habitante 17 1,42 Habitante 27 1,16
Habitante 8 1,64 Habitante 18 1,45 Habitante 28 1,73
Habitante 9 1,77 Habitante 19 1,20 Habitante 29 1,62
Habitante 10 1,49 Habitante 20 1,98 Habitante 30 1,01
Si presentáramos esta información en una tabla de frecuencia obtendríamos una tabla de 30 líneas (una para cada valor), cada uno de ellos con una frecuencia absoluta de 1 y con una frecuencia relativa del 3,3%. Esta tabla nos aportaría escasa información
En lugar de ello, preferimos agrupar los datos por intervalos, con lo que la información queda más resumida (se pierde, por tanto, algo de información), pero es más manejable e informativa:
Estatura Frecuencias absolutas Frecuencias relativas
Cm Simple Acumulada Simple Acumulada
x x x x x
1,01 - 1,10 1 1 3,3% 3,3%
1,11 - 1,20 3 4 10,0% 13,3%
1,21 - 1,30 3 7 10,0% 23,3%
1,31 - 1,40 2 9 6,6% 30,0%
1,41 - 1,50 6 15 20,0% 50,0%
1,51 - 1,60 4 19 13,3% 63,3%
1,61 - 1,70 3 22 10,0% 73,3%
1,71 - 1,80 3 25 10,0% 83,3%
1,81 - 1,90 2 27 6,6% 90,0%
1,91 - 2,00 3 30 10,0% 100,0%
El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.
Medidas de posición central
Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos.
Las medidas de posición son de dos tipos:
a) Medidas de posición central: informan sobre los valores medios de la serie de datos.
b) Medidas de posición no centrales: informan de como se distribuye el resto de los valores de la serie.
a) Medidas de posición central
Las principales medidas de posición central son las siguientes:
1.- Media: es el valor medio ponderado de la serie de datos. Se pueden calcular diversos tipos de media, siendo las más utilizadas:
a) Media aritmética: se calcula multiplicando cada valor por el número de veces que se repite. La suma de todos estos productos se divide por el total de datos de la muestra:
Xm = (X1 * n1) + (X2 * n2) + (X3 * n3) + .....+ (Xn-1 * nn-1) + (Xn * nn)
---------------------------------------------------------------------------------------
n
b) Media geométrica: se eleva cada valor al número de veces que se ha repetido. Se multiplican todo estos resultados y al producto fiinal se le calcula la raíz "n" (siendo "n" el total de datos de la muestra).
Según el tipo de datos que se analice será más apropiado utilizar la media aritmética o la media geométrica.
La media geométrica se suele utilizar en series de datos como tipos de interés anuales, inflación, etc., donde el valor de cada año tiene un efecto multiplicativo sobre el de los años anteriores. En todo caso, la media aritmética es la medida de posición central más utilizada.
Lo más positivo de la media es que en su cálculo se utilizan todos los valores de la serie, por lo que no se pierde ninguna información.
Sin embargo, presenta el problema de que su valor (tanto en el caso de la media aritmética como geométrica) se puede ver muy influido por valores extremos, que se aparten en exceso del resto de la serie. Estos valores anómalos podrían condicionar en gran medida el valor de la media, perdiendo ésta representatividad.
2.- Mediana: es el valor de la serie de datos que se sitúa justamente en el centro de la muestra (un 50% de valores son inferiores y otro 50% son superiores).
No presentan el problema de estar influido por los valores extremos, pero en cambio no utiliza en su cálculo toda la información
...