ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribucion

carelis0127 de Noviembre de 2013

2.551 Palabras (11 Páginas)199 Visitas

Página 1 de 11

La distribución de frecuencia es la representación estructurada, en forma de tabla, de toda la información que se ha recogido sobre la variable que se estudia.

Variable Frecuencias absolutas Frecuencias relativas

(Valor) Simple Acumulada Simple Acumulada

x x x x x

X1 n1 n1 f1 = n1 / n f1

X2 n2 n1 + n2 f2 = n2 / n f1 + f2

... ... ... ... ...

Xn-1 nn-1 n1 + n2 +..+ nn-1 fn-1 = nn-1 / n f1 + f2 +..+fn-1

Xn nn S n fn = nn / n S f

Siendo X los distintos valores que puede tomar la variable.

Siendo n el número de veces que se repite cada valor.

Siendo f el porcentaje que la repetición de cada valor supone sobre el total

Veamos un ejemplo:

Medimos la altura de los niños de una clase y obtenemos los siguientes resultados (cm):

Alumno Estatura Alumno Estatura Alumno Estatura

x x x x x x

Alumno 1 1,25 Alumno 11 1,23 Alumno 21 1,21

Alumno 2 1,28 Alumno 12 1,26 Alumno 22 1,29

Alumno 3 1,27 Alumno 13 1,30 Alumno 23 1,26

Alumno 4 1,21 Alumno 14 1,21 Alumno 24 1,22

Alumno 5 1,22 Alumno 15 1,28 Alumno 25 1,28

Alumno 6 1,29 Alumno 16 1,30 Alumno 26 1,27

Alumno 7 1,30 Alumno 17 1,22 Alumno 27 1,26

Alumno 8 1,24 Alumno 18 1,25 Alumno 28 1,23

Alumno 9 1,27 Alumno 19 1,20 Alumno 29 1,22

Alumno 10 1,29 Alumno 20 1,28 Alumno 30 1,21

Si presentamos esta información estructurada obtendríamos la siguiente tabla de frecuencia:

Variable Frecuencias absolutas Frecuencias relativas

(Valor) Simple Acumulada Simple Acumulada

x x x x x

1,20 1 1 3,3% 3,3%

1,21 4 5 13,3% 16,6%

1,22 4 9 13,3% 30,0%

1,23 2 11 6,6% 36,6%

1,24 1 12 3,3% 40,0%

1,25 2 14 6,6% 46,6%

1,26 3 17 10,0% 56,6%

1,27 3 20 10,0% 66,6%

1,28 4 24 13,3% 80,0%

1,29 3 27 10,0% 90,0%

1,30 3 30 10,0% 100,0%

Si los valores que toma la variable son muy diversos y cada uno de ellos se repite muy pocas veces, entonces conviene agruparlos por intervalos, ya que de otra manera obtendríamos una tabla de frecuencia muy extensa que aportaría muy poco valor a efectos de síntesis. (Tal como se verá en la siguiente lección).

Distribuciones de frecuencia agrupada

Supongamos que medimos la estatura de los habitantes de una vivienda y obtenemos los siguientes resultados (cm):

Habitante Estatura Habitante Estatura Habitante Estatura

x x x x x x

Habitante 1 1,15 Habitante 11 1,53 Habitante 21 1,21

Habitante 2 1,48 Habitante 12 1,16 Habitante 22 1,59

Habitante 3 1,57 Habitante 13 1,60 Habitante 23 1,86

Habitante 4 1,71 Habitante 14 1,81 Habitante 24 1,52

Habitante 5 1,92 Habitante 15 1,98 Habitante 25 1,48

Habitante 6 1,39 Habitante 16 1,20 Habitante 26 1,37

Habitante 7 1,40 Habitante 17 1,42 Habitante 27 1,16

Habitante 8 1,64 Habitante 18 1,45 Habitante 28 1,73

Habitante 9 1,77 Habitante 19 1,20 Habitante 29 1,62

Habitante 10 1,49 Habitante 20 1,98 Habitante 30 1,01

Si presentáramos esta información en una tabla de frecuencia obtendríamos una tabla de 30 líneas (una para cada valor), cada uno de ellos con una frecuencia absoluta de 1 y con una frecuencia relativa del 3,3%. Esta tabla nos aportaría escasa información

En lugar de ello, preferimos agrupar los datos por intervalos, con lo que la información queda más resumida (se pierde, por tanto, algo de información), pero es más manejable e informativa:

Estatura Frecuencias absolutas Frecuencias relativas

Cm Simple Acumulada Simple Acumulada

x x x x x

1,01 - 1,10 1 1 3,3% 3,3%

1,11 - 1,20 3 4 10,0% 13,3%

1,21 - 1,30 3 7 10,0% 23,3%

1,31 - 1,40 2 9 6,6% 30,0%

1,41 - 1,50 6 15 20,0% 50,0%

1,51 - 1,60 4 19 13,3% 63,3%

1,61 - 1,70 3 22 10,0% 73,3%

1,71 - 1,80 3 25 10,0% 83,3%

1,81 - 1,90 2 27 6,6% 90,0%

1,91 - 2,00 3 30 10,0% 100,0%

El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.

Medidas de posición central

Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos.

Las medidas de posición son de dos tipos:

a) Medidas de posición central: informan sobre los valores medios de la serie de datos.

b) Medidas de posición no centrales: informan de como se distribuye el resto de los valores de la serie.

a) Medidas de posición central

Las principales medidas de posición central son las siguientes:

1.- Media: es el valor medio ponderado de la serie de datos. Se pueden calcular diversos tipos de media, siendo las más utilizadas:

a) Media aritmética: se calcula multiplicando cada valor por el número de veces que se repite. La suma de todos estos productos se divide por el total de datos de la muestra:

Xm = (X1 * n1) + (X2 * n2) + (X3 * n3) + .....+ (Xn-1 * nn-1) + (Xn * nn)

---------------------------------------------------------------------------------------

n

b) Media geométrica: se eleva cada valor al número de veces que se ha repetido. Se multiplican todo estos resultados y al producto fiinal se le calcula la raíz "n" (siendo "n" el total de datos de la muestra).

Según el tipo de datos que se analice será más apropiado utilizar la media aritmética o la media geométrica.

La media geométrica se suele utilizar en series de datos como tipos de interés anuales, inflación, etc., donde el valor de cada año tiene un efecto multiplicativo sobre el de los años anteriores. En todo caso, la media aritmética es la medida de posición central más utilizada.

Lo más positivo de la media es que en su cálculo se utilizan todos los valores de la serie, por lo que no se pierde ninguna información.

Sin embargo, presenta el problema de que su valor (tanto en el caso de la media aritmética como geométrica) se puede ver muy influido por valores extremos, que se aparten en exceso del resto de la serie. Estos valores anómalos podrían condicionar en gran medida el valor de la media, perdiendo ésta representatividad.

2.- Mediana: es el valor de la serie de datos que se sitúa justamente en el centro de la muestra (un 50% de valores son inferiores y otro 50% son superiores).

No presentan el problema de estar influido por los valores extremos, pero en cambio no utiliza en su cálculo toda la información de la serie de datos (no pondera cada valor por el número de veces que se ha repetido).

3.- Moda: es el valor que más se repite en la muestra.

Ejemplo: vamos a utilizar la tabla de distribución de frecuencias con los datos de la estatura de los alumnos que vimos en la lección 2ª.

Variable Frecuencias absolutas Frecuencias relativas

(Valor) Simple Acumulada Simple Acumulada

x x x x x

1,20 1 1 3,3% 3,3%

1,21 4 5 13,3% 16,6%

1,22 4 9 13,3% 30,0%

1,23 2 11 6,6% 36,6%

1,24 1 12 3,3% 40,0%

1,25 2 14 6,6% 46,6%

1,26 3 17 10,0% 56,6%

1,27 3 20 10,0% 66,6%

1,28 4 24 13,3% 80,0%

1,29 3 27 10,0% 90,0%

1,30 3 30 10,0% 100,0%

Vamos a calcular los valores de las distintas posiciones centrales:

1.- Media aritmética:

Xm = (1,20*1) + (1,21*4) + (1,22 * 4) + (1,23 * 2) + ......... + (1,29 * 3) + (1,30 * 3)

--------------------------------------------------------------------------------------------------

30

Luego:

Xm = 1,253

Por lo tanto, la estatura media de este grupo de alumnos es de 1,253 cm.

2.- Media geométrica:

X = ((1,20^ 1) * (1,21^4) * (1,22^ 4) * .....* (1,29^3)* (1,30^3)) ^ (1/30)

Luego:

Xm = 1,253

En este ejemplo la media aritmética y la media geométrica coinciden, pero no tiene siempre por qué ser así.

3.- Mediana:

La mediana de esta muestra es 1,26 cm, ya que por debajo está el 50% de los valores y por arriba el otro 50%. Esto se puede ver al analizar la columna de frecuencias relativas acumuladas.

En este ejemplo, como el valor 1,26 se repite en 3 ocasiones, la media se situaría exactamente entre el primer y el segundo valor de este grupo, ya que entre estos dos valores se encuentra la división entre el 50% inferior y el 50% superior.

4.- Moda:

Hay 3 valores que se repiten en 4 ocasiones: el 1,21, el 1,22 y el 1,28, por lo tanto esta seria cuenta con 3 modas.

Medidas de posición no centrales

Las medidas de posición no centrales permiten conocer otros puntos característicos de la distribución que no son los valores centrales. Entre otros indicadores, se suelen utilizar una serie de valores que dividen la muestra en tramos iguales:

Cuartiles: son 3 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cuatro tramos iguales, en los que cada uno de ellos concentra el 25% de los resultados.

Deciles: son 9 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en diez tramos iguales, en los que cada uno de ellos concentra el 10% de los resultados.

Percentiles: son 99 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cien tramos iguales, en los que cada uno de ellos concentra el 1% de los resultados.

Ejemplo:

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com