INGENIERIA DE SISTEMAS
camellogrillo26 de Abril de 2015
8.475 Palabras (34 Páginas)293 Visitas
Propiedades y características de los sistemas
TEMAS
2.1. Propiedades de los sistemas
2.1.1. Estructura
2.1.2. Emergencia
2.1.3. Comunicación
2.1.4. Sinergia
2.1.5. Homeostasis
2.1.6. Equifinalidad
2.1.7. Entropía
2.1.8. Inmergencia
2.1.9. Control
2.1.10. Ley de la variedad requerida
<Propiedades y Características de los sistemas>
2.1.-Propiedades de los sistemas. La clasificación de un sistema al igual que el análisis de los aspectos del mismo es un proceso relativo; depende del individuo que lo hace, del objetivo que se persigue y de las circunstancias particulares en las cuales se desarrolla. Los sistemas se clasifican así:
2.1.1.-Estructura. Algunos piensan que la “estructura” de una organización es el organigrama. Otros piensan que “estructura” alude al diseño del flujo de trabajo y los procesos empresariales. Pero en el pensamiento sistémico la “estructura” es la configuración de interrelaciones entre los componentes claves del sistema, ver figura 2.1.1. Ello puede incluir la jerarquía y el flujo de los procesos, pero también incluye actitudes y percepciones, la calidad de los productos, los modos en que se toman las decisiones, y cientos de factores más
FIGURA. 2.1.1 ESTRUCTURA ARTIFICIAL
Las estructuras sistémicas suelen ser invisibles, hasta que alguien las señala. Por ejemplo, en un gran banco que conocemos, cada vez que el “coeficiente de eficiencia” desciende dos puntos, se ordena a los departamentos que recorten los gastos y despidan gente. Pero cuando se pregunta a los empleados del banco que significa el coeficiente de eficiencia, la respuesta es “sólo un número que usamos”.
Si uno pregunta “¿Qué sucede si esto cambia?”, comienzan a ver que cada elemento forma parte de una o más estructuras sistémicas. La palabra estructura se deriva del latín “struere”, significa “construir”. Pero las estructuras de los sistemas no se construyen necesariamente a sabiendas. Se construyen a partir de opciones que la gente realiza consciente o inconscientemente a lo largo del tiempo. Las interrelaciones más o menos estables entre las partes o componentes de un sistema, que pueden ser verificadas (identificadas) en un momento dado, constituyen la estructura del sistema. Según Buckley (1970) las clases particulares de interrelaciones más o menos estables de los componentes que se verifican en un momento dado constituyen la estructura particular del sistema en ese momento, alcanzando de tal modo una suerte de "totalidad" dotada de cierto grado de continuidad y de limitación. En algunos casos es preferible distinguir entre una estructura primaria (referida a las relaciones internas) y una hiperestructura (referida a las relaciones externas).
2.1.2.- Emergencia. Emergencia es lo que ocurre cuando un sistema de elementos relativamente simples se organiza espontáneamente y sin leyes explícitas hasta dar lugar a un comportamiento inteligente. Sistemas tan dispares como las colonias de hormigas, los cerebros humanos o las ciudades siguen las reglas que la emergencia dicta. En todos ellos, los agentes de un nivel inferior adoptan comportamientos propios de un nivel superior: las hormigas crean colonias; los urbanitas, vecindarios. El gurú de la informática Steven Johnson propone un apasionante recorrido por la emergencia y sus aplicaciones, dando respuesta a preguntas del tipo: ¿cómo surge un vecindario cohesionado de la asociación de tenderos, panaderos y agentes inmobiliarios? ¿De qué manera, en un futuro no tan lejano, los programas de software crearán una World Wide Web inteligente? Sistemas emergentes concilia teoría evolutiva, estudios urbanísticos,
Neurociencia e informática para introducirnos en la gran revolución científica y cultural del siglo XXI. El sistema es una emergencia de la interacción entre componentes que actúan bajo un determinado objetivo. La física clásica, que hacía uso del proceder analítico (separaba las partes y resolvía cada una de ellas, dando la solución del total, método adoptado para tratar fenómenos en otras disciplinas), presentaba limitaciones que lo condicionaban a dos situaciones: que no existiese relaciones entre las partes o que sea mínima y que estas describan comportamientos lineales. Caso contrario el proceder analítico sería incapaz de abordarlo, sería necesario el enfoque de sistemas. La Teoría General de los Sistemas es una recopilación y una suerte de emergencia de nuevos conceptos y teorías precisas y necesarias para comprender la ciencia de los sistemas y todas las corrientes que acarrea ésta. El enfoque clásico demostró ser un método bastante útil y deslumbrante hasta fines del siglo XIX, ya que los desarrollos en los diferentes campos del conocimiento se basaban en una determinada área del mismo; por ejemplo, la creación de una máquina a vapor o un receptor de radio eran competencia de un ingeniero especializado en dicha área, sin embargo, resultó insuficiente en la construcción de maquinarías basadas en tecnologías heterogéneas, como vehículos espaciales, en donde se conjugaba una serie de disciplinas como la química, física, electrónica, etc. Todo aquello que aflora como propiedad del sistema producto de la estructura. La estructura define el comportamiento de un sistema. Este concepto se refiere a que la descomposición de sistemas en unidades menores avanza hasta el límite en el que surge un nuevo nivel de emergencia correspondiente a otro sistema cualitativamente diferente. E. Morin (Arnold. 1989) señaló que la emergencia de un sistema indica la posesión de cualidades y atributos que no se sustentan en las partes aisladas y que, por otro lado, los elementos o partes de un sistema actualizan propiedades y cualidades que sólo son posibles en el contexto de un sistema dado. Esto significa que las propiedades inmanentes de los componentes sistémicos no pueden aclarar su emergencia. Estudiar las propiedades emergentes de sistemas complejos como los humanos proporciona una perspectiva distinta y muy enriquecedora a la que proporciona el simple análisis reduccionista, porque éstas propiedades no se encuentran si el sistema se divide en sus componentes y se analiza cada uno de ellos por separado. Por ejemplo, el funcionamiento de nuestro cuerpo no es sólo la suma de los subsistemas que lo componen, pues en el conjunto aparecen nuevas propiedades que no existían en los subsistemas por separado. Ocurre lo mismo con la sexualidad humana cuando hacemos una aproximación puramente mecanicista del funcionamiento de los órganos sexuales dejando de lado otros aspectos emergentes como la empatía, la ternura, el gozo compartido y el amor humano. Otro tanto se podría decir del estudio de las empresas, creadoras de riqueza [propiedad emergente] cuando hacemos una aproximación puramente economicista como si se tratara únicamente de la suma de tres factores [trabajo, capital y recursos materiales] dejando de lado otros aspectos emergentes como la autorganización, el conocimiento, el propósito o la visión compartida.
2.1.3.- Comunicación. La comunicación la entendemos como el intercambio de significados entre individuos a través de un sistema común de símbolos véase figura 2.1.3. Nace de un ingeniero electrónico (Shannon) y un matemático (Weaver) y buscaba establecer medidas cuantitativas sobre la capacidad de variados sistemas de transmitir, almacenar y procesar información y descubrir las leyes matemáticas que los gobiernan. Este modelo ofrece una lectura lineal, dado que está centrado en los mensajes enviados de un punto a otro. Al incorporar el concepto de retroalimentación de la cibernética se logra una mayor comprensión de las complejas comunicaciones interpersonales y se pasa de la concepción lineal a la circular
2.1.4.-Sinergia. La sinergia es la propiedad que permite que los procesos que se dan al interior de cada uno de los componentes del sistema, se orienten hacia un resultado total. Integra las partes en torno de un producto o de un objetivo. Esta propiedad identifica las cualidades o los comportamientos que se generan como resultado de la acción conjunta de las partes y del todo. El concepto de sinergia para efectos de organicidad, es retomado de las escuelas de los campos de la psicología en Alemania; señala que un sistema posee sinergia cuando al inspeccionar cada una de las partes en forma aislada, no puede explicarse el comportamiento del todo. Analizando un carro y considerándolo como el sistema total; al evaluar el carro en términos de sus componentes - los subsistemas -, está conformado por: 1. El sistema de tracción. 2. El chasis 3. El motor 4. La carrocería
Cada parte, desempeña una función específica, el sistema de tracción (llantas, frenos, suspensión) controlan el desplazamiento. El chasis es la estructura donde descansan las demás partes. El motor, genera la dinámica o movimiento del carro. Y la carrocería, es el revestimiento del vehículo donde se incorporan asientos, puertas, ventanas, baúl, entre otros. Como es lógico, cada componente desempeña una función por separado, y al unirlas, se tendrá el carro como el sistema total. Los sistemas presentan unas características de sinergia cuando la suma de sus partes es menor o mayor que el todo, o bien cuando al analizar alguna de ellas no explica la conducta del todo. Esto lleva a explicar la conducta global de un
...