ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Solución Procesos De Mecanizado

scabreram25 de Abril de 2015

3.978 Palabras (16 Páginas)290 Visitas

Página 1 de 16

Solucionario De Procesos I

By marximus | Studymode.com

PROBLEMA.

Un torno mandrina una pieza de un diámetro de 60 mm hasta 80 mm respectivamente; la operación de acabado: se requiere una avance de 0,06 mm/rev y una profundidad de corte de 0,5 mm y establece una velocidad de corte máximo de 40 m/min y, en el desbasto: se utilizará un avance de 0,5 mm/rev, disponiendo de la velocidad de corte máxima en 28 m/min, la pasada será de igual profundidad, y la potencia del motor eléctrico es 3,5 kw y dispone de velocidades de salida para el husillo principal de:

n = 21, 26, 32, 40, 50, 62, 78, 97, 120, 188, 234, 290 y 365 rpm

Para todas las acciones considerar un rendimiento mecánico de 75% y la presión específica de corte es 0,05 kw-min/cm3 para la operación de desbastado, y 0,07 kw-min/cm3 para la operación de acabado. Determinar:

1. Potencia efectiva del sistema.

2. Número de pasadas en el desbastado, y la profundidad de cada pasada.

3. Remoción del metal en cada proceso de manufactura.

4. Velocidad rotacional y velocidad de corte en cada proceso.

5. tiempo de mecanizado en el devastado.

SOLUCIÓN:

1. Potencia efectiva:

1.1. Profundidad de pasada:

Desbastado: .

a = 0,5 mm/rev

Vc = 28 m/min

Potencia específica o coeficiente específico del material Kc.

Kc = 0,05 kw-mi/cm3

Velocidad teórica del giro del husillo principal:

n = 21, 26, 32, 40, 50, 62, 78, 97, 120, 188 rpm

.Velocidad de corte real.

Potencia efectiva:

Pe = Pm. η = 3,5 kw (0,75) = 2,625 kw

2. Número de pasadas de desbastado, y la profundidad corte ha cada pasada

Profundidad de pasada –desbastado:

d2 = 80 – 0,5 = 79,5 mm

(Primera pasada)

Caudal de Viruta:

Ac = a. b = 0, 5 x 9, 75 = 4,875 mm2

Zw = Ac. Vc = 4,875 x 22.8 = 111, 5 cm3/min

Potencia de corte:

Pc = Kc. Zw = 0,05min-kw/cm3 x 111,5cm3/min

Pc = 5,557 kw

Pc = Kc . Zw = 0, 05 x 11, 5 = 5,557 Kw.

Pe < Pc se procede a la iteración:

Profundidad de pasada:

(Tercera pasada)

Zw = 3, 25 x 0, 5 x 22, 8 = 37, 05 cm3/min

Potencia de corte:

Pc = 0,05 x 37,05 = 1,85 kw

Pe > Pc (2,625 > 1,85 kw)..... Correcto

Acabado :

1. Velocidad de giro teórico:

2. Caudal de la viruta:

Zw = 0, 5 x 0, 06 x 37, 7 = 1, 13 cm3/min

3. Potencia de corte:

Pc = Kc. Zw = 0,07 x 1,13 cm3/min. kw-min/cm3

Pc = 7, 92 x 10-2 Kw = 0, 0792 kw

4. Tiempo de mecanizado:

Acabado:

PROBLEMA

En una operación de corte ortogonal el ángulo de ataque de la herramienta es 25° y se encuentra que el ángulo de cizallamiento es 34°, suponiendo que la fuerza de fricción (Ff) esta dada por Ff = 0.95SAO, donde A es la sección de la viruta y S es la resistencia media a la cizalladura. Se pide determinar el coeficiente de fricción.

SOLUCIÓN:

FS = FCos ( + τ-)... (1)

Ff = Fsen (τ)................. (2)

Determinando la relación de corte:

rC = 0.566

(1) / (2):

Tg (τ) = 1.31 =

PROBLEMA.

En una experiencia de corte ortogonal sé esta mecanizando un material de peso específico 7 gr/cm3 a una velocidad de corte de 20 m/min con una herramienta cuyo ángulo de ataque es de 15°, habiéndose obtenido en 5 min. 560 gr. De viruta que pesa 7gr/m. La fuerza que actúa normalmente a la superficie de ataque de la herramienta es de 46 kgf y la fuerza de fricción 23 kgf, se pide determinar:

a) El coeficiente de fricción entre la viruta y la herramienta.

b) El valor de la fuerza de corte

c) El ángulo de plano de cizallamiento

d) La potencia especifica de corte

SOLUCIÓN:

a) Coeficiente de fricción

= 0.5

b) Fuerza de corte

Fc = 50.38 Kgf

c) Ángulo de cizallamiento()

Cálculo de la razón de corte rC:

Calculamos primero la longitud de la viruta deformada del corte (lo)

Calculemos la longitud de la viruta No deformada del corte (lc)

lC = VC tm = 20 m/min. 5 min. = 100 m

= 44.24 °

d) Potencia de corte

Pc = Fc. Vc

Pc = 50.38 20 = 1007.7 kgf-m/min = 0,22 CV = 0,165 Kw

Caudal de remoción de la viruta

;

Donde t = 5 min.

Coeficiente especifico:

Kc = Pc/Zw = 1007.7/16 = 0,014 Cv-min/cm3

Kc = 6298.125 kgf. /cm²PROBLEMA.

a) Sabiendo que de la experiencia anterior el aumento de la velocidad de corte a 40 m/min., produce una vida de la herramienta 99% menor. Determinar el exponente de vida.

b) Sobre un cilindro de 35 mm de diámetro por 40 mm de longitud, se desea tallar una rosca, para realiza esta operación se recomienda una velocidad de corte de 7 m/min. y se usara un torno cuyo tornillo patrón tiene 3 mm de paso y se montara un tren de engranajes cuya relación de transmisión es de 0.5 determinar el tiempo neto para una pasada de roscado.

c) Sabiendo que al duplicar la velocidad de corte mecanizado hierro fundido con una herramienta de carburo metálico se reduce el tiempo entre afilados a 1/8 del anterior, determinar el exponente de vida de la relación de Taylor.

SOLUCIÓN:

a) Exponente de vida (100% – 99% = 1%)

Relación del tiempo:

t1 = 1%.t2

Relación velocidad - tiempo:

n = 0.15

b) tiempo de pasada

i = 0,5

p

Tiempo de mecanizado:

Tm = 0.42 min.

c) Exponente de vida del tipo de herramienta.

n = 1/3

PROBLEMA

En una experiencia de corte ortogonal mecanizando un material de peso especifico igual a 7 grf/cm3, se esta arrancando una capa de material de 0.5 mm de espesor por 8 mm de ancho con una cuchilla cuyo ángulo de ataque de 20° e incidencia es 3° respectivamente. Experimentalmente se determino que laviruta obtenida pesa 35 grf/m, la fuerza de corte es de 270 kgf y la fuerza normal o empuje es de 85 kgf. Para estas condiciones se pide calcular.

a) El coeficiente aparente de fricción media entre la viruta y la herramienta

b) El espesor de la viruta deformada, en mm.

c) La razón o modulo de corte.

d) La potencia especifica de corte en Kwmin/cm3

SOLUCIÓN:

a) Coeficiente de fricción

= 0.76

b) Espesor de viruta deformada:

es = 0.625 mm.

c) Relación de corte

d) Potencia especifica de corte.

Donde: A = 0.58 = 4 mm²

PS = 0.011 Kwmin/cm3

PROBLEMA.

Sobre una barra cilíndrica de 50 mm de diámetro por 200 mm de longitud se han programado las siguientes operaciones:

Primero.- Dos pasadas de desbaste ha toda la longitud, con una profundidad de corte de 1.6 mm por vez, un avance de 0.45 mm/rev y una velocidad del husillo principal de 95 rpm

Segundo.- Una pasada de acabado a toda la longitud, con una profundidad de pasada de 0.4 mm y un avance de 0. 12 mm/rev y una velocidad del husillo de 130rpm

Tercero.- Ejecución de una porción cónica de 55 mm de longitud y 4% de conicidad en uno de los extremos.

La potencia especifica de corte puede considerarse sensiblemente constante para las condiciones de desbaste, e igual a 0.035 CVmin/cm3, y para el acabado se empleara la relación de Taylor de Vt0.2 = 38.

Se pide calcular:

1. Potencia consumida en la operación para la primera pasada de desbastado en Cv.

2. Tiempo de vida de la herramienta, para las condiciones de acabado, en min.

3. Descentrado de la contrapunta, para ejecutar la porción cónica, en mm.

4. Diámetro menor del extremo cónico, en mm.

SOLUCIÓN:

1. Potencia consumida.

df = 50 - 2(1.6) = 46.8 mm (una pasada)

df = 50 - 2(2.1.6) = 43,6 mm (las dos pasadas)

Velocidad de corte, en una pasada:

Área No deformada:

Ac = pa = 1.6. 0.45 =0,72 mm²

Caudal de remoción:

Zw = Ac* Vc = 0,72.14.44 = 10.4 cm3 /min.

Potencia de Corte:

Pc = ZwKc = 10. 4 0.035

PC = 0.36 CV

2. Tiempo de vida

df = 43.6 - 2(0.4) = 42.8 mm

t = 46.4 min.

3. Descentrado.

e = 4 mm

4. Diámetro menor.

d = 40.6 mm

PROBLEMA

En un torno universal, la transmisión de movimiento al husillo principal se realiza mediante su transmisión por las poleas trapeciales y conos escalonados iguales opuestos (100, 150 y 200 mm), como se muestra en la figura adjunta, donde la velocidad rotacional del motor es 3750 rpm, y su mínima velocidad con reductor para el husillo principal es 80 rpm Determinar:

1. Las velocidades directas del husillo principal.

2. Las velocidades reducidas del husillo principal.

3. Los diámetros primitivos de las ruedas dentadas.

4. El módulo del sistema.

5. Eldiámetro primitivo polea A.

Z1 = 19 Z2 =47

Z3 = 19 Z4 = 48

SOLUCIÓN:

Diámetro de la polea A:

Relación de transmisión total:

Velocidad rotacional mínimo:

nmin = 80 rpm

...

Descargar como (para miembros actualizados) txt (24 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com