ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El ATP y las reacciones acopladas


Enviado por   •  6 de Septiembre de 2021  •  Apuntes  •  2.166 Palabras (9 Páginas)  •  142 Visitas

Página 1 de 9

[pic 1]

Clase a Clase N°6

El ATP y las reacciones acopladas

Una célula puede considerarse como una pequeña ciudad bulliciosa. Proteínas portadoras mueven sustancias hacia el interior y el exterior de la célula, proteínas motoras transportan cargas a lo largo de pistas formadas por microtúbulos y las enzimas metabólicas afanosamente degradan y construyen macromoléculas.

Incluso si no son energéticamente favorables (que liberan energía, o que son exergónicos) de forma aislada, estos procesos continuarán alegremente si hay energía disponible para impulsarlos (así como un negocio que continuará realizándose en una ciudad mientras fluya dinero). Sin embargo, si la energía se agota, las reacciones se detienen y la célula comienza a morir.

Las reacciones energéticamente desfavorables se "pagan" con reacciones acopladas energéticamente favorables que liberan energía. En la reacción de "pago" suele participar una pequeña molécula en particular: el trifosfato de adenosina, o ATP.

Hidrólisis y estructura del ATP

El trifosfato de adenosina, o ATP, es una molécula pequeña relativamente simple. Esta puede ser considerada como la principal moneda energética de las células, así como el dinero es la principal moneda económica de las sociedades humanas. La energía liberada por la hidrólisis (degradación) del ATP se utiliza para impulsar muchas reacciones celulares que requieren energía.

[pic 2]

Fig. 1. Estructura del ATP. En el centro de la molécula se encuentra un azúcar (ribosa), unida a la base adenina de un lado y a una cadena de tres fosfatos al otro. El grupo fosfato más cercano a la ribosa se denomina grupo fosfato alfa, el que está a la mitad de la cadena es el grupo fosfato beta y el del final es el grupo fosfato gama. Crédito de la imagen: OpenStax Biología

Estructuralmente , el ATP es un nucleótido de ARN que lleva una cadena de tres fosfatos. En el centro de la molécula se encuentra un azúcar de cinco carbonos, una ribosa, que se une a la base nitrogenada adenina y a la cadena de tres fosfatos.

Los tres grupos fosfato se denominan —en orden del más cercano al más alejado del azúcar ribosa— alfa, beta y gamma. El ATP es inestable debido a las tres cargas negativas adyacentes en su cola fosfato, la cuales no se "quieren" e intentan alejarse entre ellas. Los enlaces entre los grupos fosfato se llaman enlaces fosfoanhídridos y puedes encontrar que se conocen como enlaces de "alta energía".

Hidrólisis del ATP

¿Por qué se considera que los enlaces fosfoanhídridos son de alta energía? Lo que esto realmente significa es que se libera una cantidad apreciable de energía cuando uno de estos enlaces se rompe en una reacción de hidrólisis (ruptura mediada por agua). El ATP se hidroliza a ADP en la siguiente reacción:

ATP+H2OADP+Pi+energía

Nota: Pi simplemente representa a un grupo de fosfato inorgánico (PO4)-3

Como la mayoría de las reacciones químicas, la hidrólisis de ATP en ADP es reversible. La reacción inversa, que regenera ATP a partir de ADP y Pi, requiere energía. La regeneración de ATP es importante porque las células tienden a hidrolizar las moléculas de ATP muy rápidamente y dependen de que el ATP sea reemplazado constantemente.

[pic 3]

Fig. 2. Imagen del ciclo del ATP. El ATP es como una batería cargada, mientras que el ADP es como una batería muerta. El ATP puede ser hidrolizado a ADP y Pi mediante la adición de agua, liberando energía. El ADP puede "recargarse" para formar ATP al añadir energía, y combinarse con Pi en un proceso que libera una molécula de agua.

Puedes considerar al ATP y al ADP como una especie de batería recargable, en sus formas cargada y descargada (como se muestra anteriormente). El ATP, la batería cargada, tiene energía que puede ser utilizada para alimentar reacciones celulares. Una vez que la energía ha sido utilizada, la batería descargada (ADP) debe recargarse antes poder usarla de nuevo como fuente de poder. La reacción de regeneración del ATP es la reacción inversa de la hidrólisis:

Energía +ADP+PiATP+H2O

Podrías pensar: ¿que no le queda todavía un enlace fosfoanhídrido de alta energía al ADP? Sí, aún le queda uno y, en ciertas circunstancias, ese enlace puede ser hidrolizado para liberar más energía (lo que genera monofosfato de adenosina, AMP, y un fosfato inorgánico).

Hemos mencionado que se libera un montón de energía libre durante la hidrólisis de ATP, pero ¿exactamente de cuánto estamos hablando? La ∆G para la hidrólisis de un mol de ATP en ADP y Pi es −7.3 kcal/mol (−30.5 kJ/mol) en condiciones estándar (concentración 1M de todas las moléculas, a 25°C, y pH=7.0). No está mal, pero las cosas se ponen más impresionantes bajo condiciones no estándar: ∆G para la hidrólisis de un mol de ATP en una célula viva es casi el doble del valor observado en condiciones normales, cerca de −14 kcal/mol (−57 kJ/mol).

Acoplamiento de reacciones

¿Cómo se utiliza la energía liberada por la hidrólisis de ATP para impulsar otras reacciones en una célula? En la mayoría de los casos, las células utilizan una estrategia denominada acoplamiento de reacciones, en la que una reacción energéticamente favorable (como la hidrólisis de ATP) se vincula directamente con una reacción energéticamente desfavorable (endergónica). La vinculación suele ocurrir mediante un compuesto intermedio compartido, lo que significa que el producto de una reacción es "tomado" y utilizado como reactivo en la segunda reacción.

Cuando dos reacciones se acoplan, estas pueden sumarse para dar una reacción general y la ΔG de esta reacción será la suma de los valores de ΔG de las reacciones individuales. Mientras el ΔG global sea negativo, ambas reacciones pueden ocurrir. Incluso puede ocurrir una reacción muy endergónica si se acopla a una muy exergónica (como la hidrólisis de ATP). Por ejemplo, podemos sumar un par de reacciones genéricas acopladas por un intermedio común, B, de la siguiente manera:

[pic 4]

El intermediario, B, no aparece en la reacción acoplada general. Esto se debe a que aparece como producto y como reactivo, así que las dos Bs se cancelan entre sí al sumar las reacciones.

...

Descargar como (para miembros actualizados)  txt (13.3 Kb)   pdf (362 Kb)   docx (1.1 Mb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com