ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematicas en las ciencias naturales

Pedro OlivaresApuntes12 de Agosto de 2021

5.749 Palabras (23 Páginas)399 Visitas

Página 1 de 23

Las matemáticas o la matemática2​ (del latín mathematĭca, y este del griego μαθηματικά, transliterado como mathēmatiká, derivado de μάθημα, tr. máthēma. 'conocimiento') son/es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia/n las propiedades, estructuras abstractas y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos o símbolos en general.[cita requerida]

La matemática es un conjunto de lenguajes formales que pueden usarse como herramienta para plantear problemas en contextos específicos. Por ejemplo, el siguiente enunciado puede expresarse de dos formas: X es mayor que Y y Y es mayor que Z, o en forma simplificada puede decirse que X > Y > Z. Este es el motivo por el cual las matemáticas son tan solo un lenguaje simplificado con una herramienta para cada problema específico (por ejemplo, 2 x 2 = 4 o bien 2 + 2 = 4).[cita requerida]

Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):3​

La enorme utilidad de las matemáticas en las ciencias naturales es algo que roza lo misterioso, y no hay explicación para ello. No es en absoluto natural que existan «leyes de la naturaleza», y mucho menos que el hombre sea capaz de descubrirlas. El milagro de lo apropiado que resulta el lenguaje de las matemáticas para la formulación de las leyes de la física es un regalo maravilloso que no comprendemos ni nos merecemos.

Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico.

Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.

Hoy día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, las humanidades, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación del conocimiento matemático a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo.

Índice

1        Introducción

1.1        Etimología

1.2        Algunas definiciones de matemáticas

1.3        Epistemología y controversia sobre la matemática como ciencia

1.4        Historia

2        Aspectos formales, metodológicos y estéticos

2.1        La inspiración, las matemáticas puras, aplicadas y la estética

2.2        Notación, lenguaje y rigor

2.3        La matemática como ciencia

3        Ramas de estudio de las matemáticas

3.1        Matemáticas puras

3.1.1        Cantidad

3.1.2        Estructura

3.1.3        Espacio

3.1.4        Cambio

3.2        Matemáticas aplicadas

3.2.1        Estadística y ciencias de la decisión

3.2.2        Matemática computacional

4        Véase también

5        Referencias

6        Bibliografía

7        Enlaces externos

Introducción

Etimología

La palabra «matemática» (del griego μαθηματικά mathēmatiká , «cosas que se aprenden») viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción». Las matemáticas requieren un esfuerzo de instrucción o aprendizaje, refiriéndose a áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas, como la astronomía. «El arte matemática» (μαθηματική τέχνη, mathēmatikḗ tékhnē) se contrapondría en esto a la música, «el arte de las musas» (μουσική τέχνη, mousikē téchnē), que sería un arte, como la poesía, retórica y similares, que se puede apreciar directamente, «que se puede entender sin haber sido instruido».4​ Aunque el término ya era usado por los pitagóricos (matematikoi) en el siglo VI a. C., alcanzó su significado más técnico y reducido de «estudio matemático» en los tiempos de Aristóteles (siglo IV a. C.). Su adjetivo es μαθηματικός (mathēmatikós), «relacionado con el aprendizaje», lo cual, de manera similar, vino a significar «matemático». En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa «el arte matemática».

La forma más usada es el plural matemáticas (cuyo acortamiento es «mates»),5​ que tiene el mismo significado que el singular2​y viene de la forma latina mathematica (Cicerón), basada en el plural en griego τα μαθηματικά (ta mathēmatiká), usada por Aristóteles y que significa, a grandes rasgos, «todas las cosas matemáticas». Algunos autores, sin embargo, hacen uso de la forma singular del término; tal es el caso de Bourbaki, en el tratado Elementos de matemática (Élements de mathématique, 1940), destaca la uniformidad de este campo aportada por la visión axiomática moderna, aunque también hace uso de la forma plural como en Éléments d'histoire des mathématiques (Elementos de historia de las matemáticas) (1969), posiblemente sugiriendo que es Bourbaki quien finalmente realiza la unificación de las matemáticas.6​ Así mismo, en el escrito L'Architecture des mathématiques (1948) plantea el tema en la sección «Matemáticas, singular o plural» donde defiende la unicidad conceptual de las matemáticas aunque hace uso de la forma plural en dicho escrito.7​

Algunas definiciones de matemáticas

Establecer definiciones claras y precisas es el fundamento de la matemática, pero definirla ha sido difícil, se muestran algunas definiciones de pensadores famosos:

René Descartes: (Cirilo Flórez Miguel, ed. Obra completa. Biblioteca de Grandes Pensadores 2004) «La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles».

David Hilbert: (Putnam, Hilary: On the infinite. Philosophy of Mathematics, p.187, 1998). «En un cierto sentido, el análisis matemático es una sinfonía del infinito. La matemática es el sistema de las fórmulas demostrables».

Benjamin Peirce: (Nahin, Paul , The Story of i , p.68, 1998). «La matemática es la ciencia que extrae conclusiones necesarias».

Bertrand Russell: (Principia mathematica, 1913). «Las matemáticas poseen no solo la verdad, sino cierta belleza suprema. Una belleza fría y austera, como la de una escultura».

Ibo Bonilla: (¿Qué es matemática?, Academia.edu, 2014). «Hacer matemática es desentrañar los ritmos del Universo». «La matemática es la ciencia de estructurar una realidad estudiada, es el conjunto de sus elementos, proporciones, relaciones y patrones de evolución en condiciones ideales para un ámbito delimitado».

John David Barrow: (Imposibilidad. P 96. Gedisa, 1999). «En el fondo, matemática es el nombre que le damos a la colección de todas las pautas e interrelaciones posibles. Algunas de estas pautas son entre formas, otras en secuencias de números, en tanto que otras son relaciones más abstractas entre estructuras. La esencia de la matemática está en la relación entre cantidades y cualidades».

Epistemología y controversia sobre la matemática como ciencia

El carácter epistemológico y científico de las matemáticas ha sido ampliamente discutido. En la práctica, las matemáticas se emplean para estudiar relaciones cuantitativas, estructuras, relaciones geométricas y las magnitudes variables. Los matemáticos buscan patrones,8​9​ formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante deducciones rigurosas. Estas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.10​ Algunas definiciones clásicas restringen las matemáticas al razonamiento sobre cantidades,2​aunque solo una parte de las matemáticas actuales usan números, predominando el análisis lógico de construcciones abstractas no cuantitativas.

...

Descargar como (para miembros actualizados) txt (38 Kb) pdf (120 Kb) docx (24 Kb)
Leer 22 páginas más »
Disponible sólo en Clubensayos.com