EOR Methods
RossQuinte18 de Septiembre de 2012
5.933 Palabras (24 Páginas)476 Visitas
Oil & Gas Science and Technology – Rev. IFP, Vol. 63 (2008), No. 1, pp. 9-19
Copyright © 2007, Institut français du pétrole
DOI: 10.2516/ogst:2007060
Enhanced Oil Recovery – An Overview
S. Thomas
PERL Canada Ltd., Canada
e-mail: sarathomas@shaw.ca
Résumé — Récupération assistée du pétrole : panorama — Près de 2,0 × 1012 barils (0,3 × 1012 m3)
de pétrole conventionnel et 5,0 × 1012 barils (0,8 × 1012 m3) de pétrole lourd resteront dans les réservoirs
du monde entier lorsque les méthodes de récupération traditionnelles auront été épuisées. Une grande
partie de ce pétrole serait récupéré grâce à des méthodes de Récupération Assistée du Pétrole (EOR), qui
fait partie du projet général de Récupération Améliorée du Pétrole (IOR). Le choix de la méthode et la
récupération escomptée dépendent de nombreuses considérations économiques et technologiques. Cet
article étudie les méthodes EOR qui ont été testées sur le terrain. Certaines ont été une réussite commerciale,
tandis que d’autres sont d’un intérêt essentiellement académique. Les raisons en sont discutées.
L’article examine les méthodes de récupération du pétrole thermique et non thermique. Elles sont présentées
de façon équilibrée, en prenant en compte le succès commercial sur le terrain. Seules quelques
méthodes de récupération ont connu une réussite commerciale, tels que les processus d’injection de
vapeur dans les pétroles lourds et les sables bitumineux (si le réservoir offre des conditions favorables
pour de telles applications) et de dioxyde de carbone miscible pour les réservoirs de pétrole léger.
D’autres méthodes de récupération ont été testées, et ont même permis d’augmenter la récupération
d’huile mais comportent des limites inhérentes. Les technologies EOR actuelles sont présentées dans une
perspective appropriée, soulignant les raisons techniques au manque de réussite. Les méthodes d’amélioration
de la récupération de pétrole, en particulier celles visant à diminuer la saturation interstitielle du
pétrole, ont fait l’objet d’une attention particulière dans les laboratoires et sur le terrain. Les nombreux
documents qui traitent du sujet donnent l’impression qu’il est relativement simple d’augmenter la récupération
de pétrole au-delà de la récupération secondaire (en assumant que le réservoir se prête à une récupération
primaire et secondaire). Il s’avère que ce n’est pas le cas. De nombreux réservoirs adaptés à l’injection
de vapeur et au dioxyde de carbone ont déjà été exploités et arrivent à maturité. D’autres
méthodes EOR rencontrent des limites qui ne sont pas liées à des facteurs économiques. La récupération
du pétrole supplémentaire est complexe et coûteuse, et s’est révélé probante seulement pour quelques
processus et ce, dans des conditions astreignantes. Néanmoins, l’EOR continuera d’avoir une place
importante dans la production pétrolière, en raison de l’intensification de la demande en énergie et de
l’offre limitée. Un important travail de recherche doit être mené à bien pour développer des technologies
de récupération sur les deux tiers du pétrole qui ne sera pas récupéré dans les réservoirs. Des références
clés sont indiquées.
Abstract — Enhanced Oil Recovery: An Overview — Nearly 2.0 × 1012 barrels (0.3 × 1012 m3) of
conventional oil and 5.0 × 1012 barrels (0.8 × 1012 m3) of heavy oil will remain in reservoirs worldwide
after conventional recovery methods have been exhausted. Much of this oil would be recovered by
Enhanced Oil Recovery (EOR) methods, which are part of the general scheme of Improved Oil Recovery
(IOR). The choice of the method and the expected recovery depends on many considerations, economic
as well as technological. This paper examines the EOR methods that have been tested in the field. Some
Molecular Structures of Heavy Oils and Coal Liquefaction Products
Structure moléculaire des huiles lourdes et produits de liquéfaction du charbon
IFP International Conference
Rencontres Scientifiques de l’IFP
Oil & Gas Science and Technology – Rev. IFP, Vol. 63 (2008), No. 1
1 IOR VS. EOR
The terms EOR and IOR have been used loosely and
interchangeably at times. IOR, or improved oil recovery, is a
general term which implies improving oil recovery by any
means. For example, operational strategies, such as infill
drilling and horizontal wells, improve vertical and areal
sweep, leading to an increase in oil recovery. Enhanced oil
recovery, or EOR, is more specific in concept, and it can be
considered as a subset of IOR. EOR implies a reduction in
oil saturation below the residual oil saturation (Sor).
Recovery of oils retained due to capillary forces (after a
waterflood in light oil reservoirs), and oils that are immobile
or nearly immobile due to high viscosity (heavy oils and tar
sands) can be achieved only by lowering the oil saturation
below Sor. Miscible processes, chemical floods and steambased
methods are effective in reducing residual oil saturation,
and are hence EOR methods. The main focus of this
paper is on EOR methods.
The target of EOR varies considerably for the different
types of hydrocarbons. Figure 1 shows the fluid saturations
and the target of EOR for typical light and heavy oil reservoirs
and tar sands. For light oil reservoirs, EOR is usually
applicable after secondary recovery operations, and the EOR
target is ~45% OOIP. Heavy oils and tar sands respond
poorly to primary and secondary recovery methods, and the
bulk of the production from such reservoirs come from EOR
methods.
2 RECOVERY OF RESIDUAL OIL
Mobilization of residual oil is influenced by two major
factors: Capillary Number (Nc) and Mobility Ratio (M).
Capillary Number is defined as Nc = vμ/σ, where v is the
Darcy velocity (m/s), μ is the displacing fluid viscosity (Pa.s)
and σ is the interfacial tension (N/m). The most effective and
practical way of increasing the Capillary Number is by
10
of these have been commercially successful, while others are largely of academic interest. The reasons
for the same are discussed. The paper examines thermal and non-thermal oil recovery methods. These
are presented in a balanced fashion, with regard to commercial success in the field. Only a few recovery
methods have been commercially successful, such as steam injection based processes in heavy oils and
tar sands (if the reservoir offers favourable conditions for such applications) and miscible carbon dioxide
for light oil reservoirs. Other recovery methods have been tested, and even produced incremental oil, but
they have inherent limitations. The current EOR technologies are presented in a proper perspective,
pointing out the technical reasons for the lack of success. Methods for improving oil recovery, in particular
those concerned with lowering the interstitial oil saturation, have received a great deal of attention
both in the laboratory and in the field. From the vast amount of literature on the subject, one gets the
impression that it is relatively simple to increase oil recovery beyond secondary (assuming that the reservoir
lends itself to primary and secondary recovery). It is shown that this is not the case. Many reservoirs
suitable for steam injection and carbon dioxide have already been exploited and are approaching
maturity. Other EOR methods suffer from limitations that have little to do with economics. Recovering
incremental oil is complex and costly, and has been successful only for a few processes under exacting
conditions. Nevertheless, EOR will continue to have an important place in oil production, in view of the
escalating energy demand and the tight supply. It is suggested that much research is needed to develop
technologies for recovering over two-thirds of the oil that will remain unrecovered in reservoirs. Key
references are indicated.
(Assuming Soi = 85% PV and Sw = 15% PV)
Light oils Heavy oils Tar sands
Water
EOR Target
100% OIP
Water
EOR Target
45% OIP
Secondary
30% OIP
Primary
25% OIP
Water
EOR Target
90% OIP
Secondary
5% OIP
Primary
5% OIP
Figure 1
EOR targt for different hydrocarbons.
S Thomas / Enhanced Oil Recovery – An Overview
reducing σ, which can be done by using a suitable surfactant
or by the application of heat. An approximation of the effect
of Capillary Number on residual oil saturation is shown in
Figure 2. Capillary number at the end of a waterflood is
~10-7. A 50% reduction in residual oil saturation requires that
the Capillary Number be increased by 3 orders of magnitude.
Capillary number in a miscible displacement becomes infinite,
and under such conditions, residual oil saturation in the
swept zone can be reduced to zero if the
...