ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Lipidos Y Glucidos


Enviado por   •  15 de Octubre de 2012  •  1.771 Palabras (8 Páginas)  •  507 Visitas

Página 1 de 8

LIPIDOS

El metabolismo de los lípidos es algo complejo ya que al ser sustancias insolubles deben ser unidos a proteicas con el fin de hacerlos solubles y poder vehículizarlos y transportarlos.

Origen de los lípidos:

Exógenos; son aquellos que provienen de la dieta. Generalmente se transportan por los vasos linfáticos de manera que se unen proteínas formando quilomicrones, que son ricos en triglicéridos.

Estos, sólo pueden ser utilizados por los tejidos que tienen la encima protein-lipasa; hígado, músculo, tejido adiposo y glándula mamaria.

Endógenos; son aquellos fabricados en el organismo, generalmente en el hígado y se unen a proteínas formando lipoproteínas. Se clasifican:

VLDL( lipoproteínas de muy baja densidad); se encargan del transporte de triglicéridos con lo cual su utilizados sólo por los tejidos con la encima protein-lipasa.

LDL (lipoproteínas de baja densidad); se encargan del transporte de ésteres de colesterol desde el hígado a todos los tejidos ya que el colesterol es utilizado para formar membranas biológicas.

IDL (lipoproteínas de densidad intermedia); se producen como consecuencia del metabolismo de los anteriores por lo cual también llevan colesterol.

HDL (lipoproteínas de densidad alta); son un sistema de transporte inverso de forma que llevan el colesterol desde los tejidos hasta el hígado por lo que se puede decir que limpian los tejidos de colesterol. (esto se conoce vulgarmente como colesterol bueno.)

Hiperlipidemias.

Por el diagnóstico tenemos dos tipos:

Hipertrigliceridemia; más de 200 mg/dl. Que consisten en la cúmulo de triglicéridos y que sabe que en conjunción con el colesterol son patógenos pero que por sí solos no favorecen la arteriosclerosis.

Hipercolesterolemia; madre 240 mg/dl. Consiste en el acumulo de colesterol de forma que es patógeno acelerando la arteriosclerosis.

Digestión de lípidos

Es la conversión de los alimentos en sustancias absorbibles en el tracto gastrointestinal. Se realiza por el desdoblamiento, mecánico y químico de los alimentos, en moléculas. En resumen, la digestión se inicia en la boca, continúa en el esófago y en el estómago y sigue en el intestino delgado favorecida por secreciones biliares, pancreáticas y por el moco y líquido extracelular segregado por las criptas de Lieberkuhn de la mucosa del intestino delgado. Además, una serie de enzimas de las microvellosidades de la superficie intestinal realizan una degradación de los carbohidratos y de las proteínas, que son absorbidos en el epitelio intestinal.

A nivel del estómago hay una lipasa gástrica, aunque la digestión de los lípidos no comienza realmente hasta que no llegan al intestino delgado. Para que tenga lugar, es necesaria la emulsión de las grasas.

Tipos de lipasas:

Lipasa pancreática.

Lipasa entérica. Segegada por las células epiteliales intestinales. Actúa sobre los triglicéridos.

Fosfolipasas (y). Actúan sobre los fosfolípidos. Son de origen pancreático.

Diesterasas. Son de origen pancreático. Producen glicerol-fosforilcolina y glicerol-fosfatocolina.

Colesterol esterasa.

En el intestino se absorben los monoglicéridos, ácidos grasos, glicerina y colesterol.

ABSORCIÓN DE LÍPIDOS

Gracias a la emulsión de las grasas, se forman micelas. Éstas, se unen a la membrana de los enterocitos y vierten su contenido al interior de la membrana. Es un transporte por difusión. En el interior del enterocito, los monoglicéridos se almacenan en el REL, de donde pasan al RER.

Allí se sintetizan de nuevo los triglicéridos, y son almacenados en el Golgi y empaquetados (forman una gran gota de grasa) formando quilomicrones, en cuyo interior hay triglicéridos. Los quilomicrones salen al espacio intercelular en la zona laterobasal mediante exocitosis, y de ahí van al sistema linfático.

METABOLISMO

El metabolismo es el conjunto de reacciones bioquímicas y procesos físico-químicos que ocurren en una célula y en el organismo.1 Estos complejos procesos interrelacionados son la base de la vida a escala molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.

La metabolización es el proceso por el cual el organismo consigue que sustancias activas se transformen en no activas.

Este proceso lo realizan en los seres humanos enzimas localizadas en el hígado. En el caso de las drogas psicoactivas a menudo lo que se trata simplemente es de eliminar su capacidad de pasar a través de las membranas de lípidos, de forma que ya no puedan pasar la barrera hematoencefálica, con lo que no alcanzan el sistema nervioso central.

Por tanto, la importancia del hígado y el porqué este órgano se ve afectado a menudo en los casos de consumo masivo o continuado de drogas.

El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.

El metabolismo de un organismo determina qué sustancias encontrará nutritivas y cuáles encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como nutriente, pero este gas es venenoso para los animales. La velocidad del metabolismo, el rango metabólico, también influye en cuánto alimento va a requerir un organismo.

Una característica del metabolismo es la similitud de las rutas metabólicas básicas incluso entre especies muy diferentes. Por ejemplo: la secuencia de pasos químicos en una vía metabólica como el ciclo de Krebs es universal entre células vivientes tan diversas como la bacteria unicelular Escherichia coli y organismos pluricelulares como el elefante. Esta estructura metabólica compartida es probablemente el resultado de la alta eficiencia de estas rutas, y de su temprana aparición en la historia evolutiva.

GLUCIDOS

Los glúcidos, carbohidratos, hidratos de carbono o sacáridos (del griego σάκχαρ "azúcar") son biomoléculas compuestas por carbono, hidrógeno y oxígeno. La glucosa, el glucógeno y el almidón son las formas biológicas primarias de almacenamiento y consumo de energía; la celulosa forma la pared celular de las células vegetales y la quitina es el principal constituyente del exoesqueleto de los artrópodos.

El término "hidrato de carbono" o "carbohidrato" es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino que constan de átomos de carbono unidos a otros grupos funcionales como carbonilo e hidroxilo. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero >= 3). De aquí que el término "carbono-hidratado" se haya mantenido, si bien posteriormente se demostró que no lo eran. Además, los textos científicos anglosajones aún insisten en denominarlos carbohydrates lo que induce a pensar que este es su nombre correcto. Del mismo modo, en dietética, se usa con más frecuencia la denominación de carbohidratos.

Los glúcidos pueden sufrir reacciones de esterificación, aminación, reducción, oxidación, lo cual otorga a cada una de las estructuras una propiedad específica, como puede ser de solubilidad.

Digestión, asimilación y almacenamiento

Los glúcidos como el almidón, la dextrina, el glucógeno (el almidón animal), la sacarosa (el azúcar de caña), la maltosa (el azúcar de malta) y la lactosa, se descomponen en el tracto digestivo en azúcares simples de seis carbonos, que pasan con facilidad a través de la pared intestinal. La fructosa (el azúcar de la fruta) y la glucosa no se alteran durante la digestión y se absorben como tales. La celulosa, presente en muchos alimentos, es un elemento nutricional importante para algunos animales, en especial ganado y termitas, pero, aunque es básica en el proceso global de la digestión, no tiene valor en la nutrición humana.

La digestión de los glúcidos se realiza gracias a la acción de varias enzimas. La amilasa, que se encuentra en la saliva y en el intestino, descompone el almidón, la dextrina y el glucógeno en maltosa, un azúcar de doce carbonos. Otras enzimas del intestino delgado descomponen los azúcares de doce carbonos en otros de seis. Así, la maltasa hidroliza la maltosa en glucosa; la sacarasa o invertasa rompe el azúcar de caña en glucosa y fructosa; la lactasa descompone el azúcar de la leche en glucosa y galactosa.

Los azúcares de seis carbonos, producto final de la digestión de los glúcidos, atraviesan la pared del intestino delgado a través de los capilares (vasos sanguíneos diminutos) y alcanzan la vena porta que los lleva hasta el hígado. En este órgano son transformados y almacenados en forma de glucógeno El glucógeno está siempre disponible y cuando el organismo lo requiere se convierte en glucosa y se libera al torrente sanguíneo. Uno de los productos finales del metabolismo de la glucosa en los músculos es el ácido láctico, que llevado por la sangre de nuevo al hígado, se reconvierte en parte a glucógeno.

Absorción de glúcidos

Principales glúcidos de la dieta humana aunque las costumbres dietéticas del hombre varían extraordinariarnente de acuerdo con sus hábitos, tradiciones y posibilidades adquisitivas, en la mayoría de los países son los alimentos ricos en glúcidos los componentes mayoritarios de las dietas, en lo cual influye sin dudas, su abundancia en la naturaleza, lo que los hace más asequibles. En este sentido, los esquimales constituyen una excepción, pues en su dieta los glúcidos son minoritarios. Los compuestos glucídicos más abundantes de la dieta humana son de 2 tipos principales: polisacáridos y disacáridos. Entre los primeros se encuentran el almidón el más importante, el glucógeno y la celulosa; la sacarosa y la lactosa son fundamentales disacáridos, y la lactosa es especialmente relevante en la dieta de niños lactantes. Las estructuras químicas del glucógeno y de la amilopectina del almidón son muy parecidas; en los 2 casos, el monosacárido constituyente es la glucosa y sus enlaces son del mismotipo: n 1-4 en las cadenas lineales y n 1-6 en los puntos de ramificación. Sin embargo, la celulosa presenta uniones de tipo glicmídicas entre sus residuos de glucosa. La sacarosa está formada por una molécula de glucosa y una de fructosa; la lactosa posee una galactosa y una glucosa, y la maltosa, 2 glucosas.

Metabolismo de los glúcidos

Los glúcidos representan las principales moléculas almacenadas como reserva en los vegetales. Los vegetales almacenan grandes cantidades de almidón producido a partir de la glucosa elaborada por fotosíntesis, y en mucha menor proporción, lípidos (aceites vegetales).

Las principales rutas metabólicas de los glúcidos son:

Glicólisis. Oxidación de la glucosa a piruvato.

Fermentación. La glucosa se oxida a lactato (fermentación láctica), o etanol y CO2 (fermentación alcohólica.

Gluconeogénesis. Síntesis de glucosa a partir de precursores no glucídicos.

Glucogénesis. Síntesis de glucógeno.

Ciclo de las pentosas. Síntesis de pentosas para los nucleótidos.

En el metabolismo oxidativo encontramos rutas comunes con los lípidos como son el ciclo de Krebs y la cadena respiratoria. Los oligo y polisacáridos son degradados inicialmente a monosacáridos por enzimas llamadas glicósido hidrolasas. Entonces los monosacáridos pueden entrar en las rutas catabólicas de la glucosa.

La principal hormona que controla el metabolismo de los glúcidos es la insulina.

...

Descargar como  txt (11.8 Kb)  
Leer 7 páginas más »
txt