ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

MKT-Inv De Mercados

taty_tth29 de Agosto de 2011

10.495 Palabras (42 Páginas)748 Visitas

Página 1 de 42

TRABAJO DE INVESTIGACIÓN Nº1

LA MUESTRA, EL MUESTREO Y SU APLICACIÓN EN LA INVESTIGACIÓN DE MERCADOS EN EL MARKETING

I. MUESTRA

1. Definición

En estadística una muestra estadística (también llamada muestra aleatoria o simplemente muestra) es un subconjunto de casos o individuos de una población estadística.

Las muestras se obtienen con la intención de inferir propiedades de la totalidad de la población, para lo cual deben ser representativas de la misma. Para cumplir esta característica la inclusión de sujetos en la muestra debe seguir una técnica de muestreo. En tales casos, puede obtenerse una información similar a la de un estudio exhaustivo con mayor rapidez y menor coste (véanse las ventajas de la elección de una muestra, más abajo).

Por otra parte, en ocasiones, el muestreo puede ser más exacto que el estudio de toda la población porque el manejo de un menor número de datos provoca también menos errores en su manipulación. En cualquier caso, el conjunto de individuos de la muestra son los sujetos realmente estudiados.

El número de sujetos que componen la muestra suele ser inferior que el de la población, pero suficiente para que la estimación de los parámetros determinados tenga un nivel de confianza adecuado. Para que el tamaño de la muestra sea idóneo es preciso recurrir a su cálculo.

2. Definiciones Estadísticas y Conceptos Básicos Relacionadas a la Muestra

2.1. Estadística

La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilados a partir de otros datos numéricos.

Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.

“La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares”. (Gini, 1953.

Murria R. Spiegel, (1991) dice: “La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.

“La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos”. (Yale y Kendal, 1954).

Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.

2.2. Población

El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.

“Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones”. Levin & Rubin (1996).

“Una población es un conjunto de elementos que presentan una característica común”. Cadenas (1974).

Ejemplo:

Los miembros del Colegio de Ingenieros del Estado Cojedes.

El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.

Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesarios para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.

Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.

En resumen, la población no es más que aquel conjunto de individuos o elementos que le podemos observar, medir una característica o atributo.

Otros ejemplos de población:

 El conjunto formado por todos los estudiantes universitarios en Cuba.

 El conjunto de todos los estudiantes de una Universidad.

 El conjunto de personas fumadoras de una región.

Son características medibles u observables de cada elemento por ejemplo, su estatura, su peso, edad, sexo, etc.

Supongamos que nos interesa conocer el peso promedio de la población formada por los estudiantes de una universidad. Si la universidad tiene 5376 alumnos, bastaría pesar cada estudiante, sumar los 5376 pesajes y dividirlo por 5376. Pero este proceso puede presenta dificultades dentro de las que podemos mencionar:

 Localizar y pesar con precisión cada estudiante:

 Escribir todos los datos sin equivocaciones en una lista:

 Efectuar los cálculos.

Las dificultades son mayores si en número de elementos de la población es infinito, si los elementos se destruyen, si sufren daños al ser medidos o están muy dispersos, si el costo para realizar el trabajo es muy costoso.

Una solución a este problema consiste en medir solo una parte de la población que llamaremos muestra y tomar el peso medio en la muestra como una aproximación del verdadero valor del peso medio de la población.

El tamaño de la población es la cantidad de elementos de esta y el tamaño de la muestra es la cantidad de elementos de la muestra. Las poblaciones pueden ser finitas e infinitas.

Los datos obtenidos de una población pueden contener toda la información que se desee de ella. De lo que se trata es de extraerle esa información a la muestra, es decir a los datos muestrales sacarle toda la información de la población.

2.3. Muestra

“Se llama muestra a una parte de la población a estudiar que sirve para representarla”. Murria R. Spiegel (1991).

“Una muestra es una colección de algunos elementos de la población, pero no de todos”. Levin & Rubin (1996).

“Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia”, Cadenas (1974).

Ejemplo:

El estudio realizado a 50 miembros del Colegio de Ingenieros del Estado Cojedes.

El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último se aprobado que el examen de una población entera todavía permite la aceptación de elementos defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad.

Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población.

Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.

La muestra debe obtener toda la información deseada para tener la posibilidad de extraerla, esto sólo se puede lograr con una buena selección de la muestra y un trabajo muy cuidadosos y de alta calidad en la recogida de los datos.

Otro ejemplo:

Es bueno señalar que en un momento una población puede ser muestra en una investigación y una muestra puede ser población, esto está dado por el objetivo del investigación, por ejemplo en el caso de determinar la estatura media de los estudiantes universitarios en Cuba una muestra podía ser escoger algunas universidades del país y realizar el trabajo, si por el contrario se quiere saber la estatura promedio de los estudiantes de una universidad en especifico en Cuba, entonces el conjunto formado por todos los estudiantes de esta universidad sería la población y la muestra estaría dada por los grupos, carreras o años seleccionado para realzar el experimento.

2.4. Parámetro

Una parámetro es una medida usada para describir alguna característica de una población, tal como una media aritmética, una mediana o una desviación estándar de una población.

Cuando los dos nuevos términos de arriba son usados, por ejemplo, el proceso de estimación en inferencia estadística puede ser descrito como le proceso de estimar un parámetro a partir del estadístico correspondiente, tal como usar una media muestral (un estadístico para estimar la media de la población (un parámetro).

2.5. Estadístico

Un estadístico es una medida usada para describir alguna característica de una muestra , tal como una media aritmética, una mediana o una desviación estándar de una muestra.

Los símbolos usados para representar los estadísticos y los parámetros, en éste y los

...

Descargar como (para miembros actualizados) txt (64 Kb)
Leer 41 páginas más »
Disponible sólo en Clubensayos.com