ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Cálculo Diferencial


Enviado por   •  24 de Abril de 2014  •  1.406 Palabras (6 Páginas)  •  239 Visitas

Página 1 de 6

¿Qué es el cálculo diferencial?

El cálculo diferencial es la rama de las matemáticas que comprende el estudio y aplicación del cálculo diferencial y del cálculo integral. El cálculo diferencial es una parte del análisis de expresión oral que consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objeto del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.

En el estudio del cambio de una función, es decir, cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.

Historia del cálculo.

Las principales ideas que apuntalan el cálculo se desarrollaron durante un periodo de tiempo muy largo sin duda. Los primeros pasos fueron dados por los matemáticos griegos.

Para los antiguos griegos, los números eran cocientes de enteros así que la recta numérica tenía 'hoyos' en ella. Le dieron la vuelta a esta dificultad usando longitudes, áreas y volúmenes además de números ya que, para los griegos, no todas las longitudes eran números.

Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito. Por ejemplo, argumentó que el movimiento es imposible.

Leucippo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.

Sin embargo, Arquímedes, alrededor de 225 a. C. hizo uno de las contribuciones griegas más significativas. Su primer avance importante fue demostrar que el área de un segmento de parábola es 4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3 del área del paralelogramo circunscrito. Arquímedes construyó una secuencia infinita de triángulos empezando con uno de área A y añadiendo continuamente más triángulos entre los existentes y la parábola para obtener áreas

A, A + A/4, A + A/4 + A/16, A + A/4 + A/16 + A/64, ...

Este es el primer ejemplo conocido de suma de una serie infinita.

Arquímedes usó el método exhaustivo para encontrar la aproximación al área de un círculo. Esto, por supuesto, es un ejemplo temprano de integración que llevó a valores aproximados de π.

Entre otras "integraciones" de Arquímedes estaban el volumen y la superficie de una esfera, el volumen y área de un cono, el área de una elipse, el volumen de cualquier segmento de un paraboloide de revolución y un segmente de un hiperboloide de revolución.

No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad. Luca Valerio (1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas. Kepler, en su trabajo sobre movimientos planetarios, tenía que encontrar el área de sectores de una elipse. Su método consistía en pensar en las áreas como sumas de líneas, otra forma rudimentaria de integración, pero Kepler tenía poco tiempo para el rigor griego y más bien tuvo suerte de obtener la respuesta correcta ya que cometió dos errores que se cancelaron uno al otro en su trabajo.

Tres matemáticos, nacidos en un periodo de tres años, fueron los siguientes en hacer contribuciones importantes. Eran Fermat, Roberval y Cavalieri. Este último llegó a su 'método de los indivisibles' por los intentos de integración de Kepler.

Fermat también fue más riguroso en su acercamiento pero no dio demostraciones. Generalizó la parábola y la hipérbola:

Parábola: y/a = (x/b)² generalizada como (x/a)n = (y/b)m.

Hipérbola: y/a = (b/x)² generalizada como (y/a)n = (b/x)m.

Fermat

...

Descargar como (para miembros actualizados)  txt (8.7 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com