ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Variable Aleatoria Discreta


Enviado por   •  3 de Septiembre de 2014  •  2.120 Palabras (9 Páginas)  •  275 Visitas

Página 1 de 9

VARIABLE ALEATORIA DISCRETA

Definición

Se denomina variable aleatoria discreta aquella que sólo puede tomar un número finito de valores dentro de un intervalo. Por ejemplo, el número de componentes de una manada de lobos, puede ser 4 ó 5 ó 6 individuos pero nunca 5,75 ó 5,87. Otros ejemplos de variable discreta serían el número de pollos de gorrión que llegan a volar del nido o el sexo de los componentes de un grupo familiar de babuinos.

Densidad

Se denomina densidad discreta a la probabilidad de que una variable aleatoria discreta X tome un valor numérico determinado (x). Se representa:

f(x) = P[X=x]

La suma de todas las densidades será igual a 1

DISTRIBUCIÓN DE PROBABILIDAD

En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria.

La distribución de probabilidad está completamente especificada por la función de distribución, cuyo valor en cada x real es la probabilidad de que la variable aleatoria sea menor o igual que x.

FUNCIÓN DE DISTRIBUCIÓN

Definición

Dada una variable aleatoria , su función de distribución, , es

Por simplicidad, cuando no hay lugar a confusión, suele omitirse el subíndice y se escribe, simplemente, . Donde en la fórmula anterior:

, es la probabilidad definida sobre un espacio de probabilidad y una medida unitaria sobre el espacio muestral.

Es la medida sobre la σ-álgebra de conjuntos asociada al espacio de probabilidad.

Es el espacio muestral, o conjunto de todos los posibles sucesos aleatorios, sobre el que se define el espacio de probabilidad en cuestión.

Es la variable aleatoria en cuestión, es decir, una función definida sobre el espacio muestral a los números reales.

Propiedades

Como consecuencia casi inmediata de la definición, la función de distribución:

• Es una función continua por la derecha.

• Es una función monótona no decreciente.

Además, cumple

y

Para dos números reales cualesquiera y tal que , los sucesos y son mutuamente excluyentes y su unión es el suceso , por lo que tenemos entonces que:

y finalmente

Por lo tanto una vez conocida la función de distribución para todos los valores de la variable aleatoria conoceremos completamente la distribución de probabilidad de la variable.

Para realizar cálculos es más cómodo conocer la distribución de probabilidad, y sin embargo para ver una representación gráfica de la probabilidad es más práctico el uso de la función de densidad.

Distribuciones de variable discreta

Gráfica de distribución binomial.

Se denomina distribución de variable discreta a aquella cuya función de probabilidad sólo toma valores positivos en un conjunto de valores de finito o infinito. A dicha función se le llama función de masa de probabilidad. En este caso la distribución de probabilidad es la suma de la función de masa, por lo que tenemos entonces que:

Y, tal como corresponde a la definición de distribución de probabilidad, esta expresión representa la suma de todas las probabilidades desde hasta el valor .

Distribuciones de variable discreta más importantes

Las distribuciones de variable discreta más importantes son las siguientes:

Distribución binomial

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

La distribución binomial es la base del test binomial de significación estadística.

Ejemplos:

Las siguientes situaciones son ejemplos de experimentos que pueden modelizarse por esta distribución:

• Se lanza un dado diez veces y se cuenta el número X de tres obtenidos: entonces X ~ B(10, 1/6)

• Se lanza una moneda dos veces y se cuenta el número X de caras obtenidas: entonces X ~ B(2, 1/2)

Distribución binomial negativa

En estadística la distribución binomial negativa es una distribución de probabilidad discreta que incluye a la distribución de Pascal.

El número de experimentos de Bernoulli de parámetro independientes realizados hasta la consecución del k-ésimo éxito es una variable aleatoria que tiene una distribución binomial negativa con parámetros k y .

La distribución geométrica es el caso concreto de la binomial negativa cuando k = 1.

Propiedades:

Su función de probabilidad es

para enteros x mayores o iguales que k, donde

.

Su media es

si se piensa en el número de fracasos únicamente y

si se cuentan también los k-1 éxitos.

Su varianza es

en ambos casos.

Ejemplos:

Si la probabilidad de que un niño expuesto a una enfermedad contagiosa la contraiga es 0,40, ¿Cuál es la probabilidad de que el décimo niño expuesto a la enfermedad sea el tercero en contraerla? En este caso, X es el número de niños expuestos la enfermedad y

La solución es:

En un proceso de manufactura se sabe que un promedio de 1 en cada 10 productos es defectuoso, ¿cuál es la probabilidad que el quinto (5) artículo examinado sea el primero (1) en estar defectuoso?. La solución es: X= artículos defectuosos P= 1/10 = 0,1 q= 1- 0,1 = 0,9 x= 5 ensayos K= 1 b*(5;1,0.1)=(5-1\1-1)(0.1)^1*(0.9)^5-1= b*(5; 1,0.1)= 6.6% de probabilidad que el quinto elemento extraído sea el primero en estar defectuoso.

Distribución de Poisson

En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo.

Fue descubierta por Simeón-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).

Propiedades:

La función de masa o densidad de la distribución de Poisson es

Donde

• k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces).

• λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.

• e es la base de los logaritmos naturales (e = 2,71828...)

Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Los momentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretación combinatoria. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n.

La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.

La función generadora de momentos de la distribución de Poisson con valor esperado λ es

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles.

La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es

Distribución geométrica

En teoría de probabilidad y estadística, la distribución geométrica es cualquiera de las dos distribuciones de probabilidad discretas siguientes:

• la distribución de probabilidad del número X del ensayo de Bernoulli necesaria para obtener un éxito, contenido en el conjunto { 1, 2, 3,...} o

• la distribución de probabilidad del número Y = X − 1 de fallos antes del primer éxito, contenido en el conjunto { 0, 1, 2, 3,... }.

Cual de éstas es la que uno llama "la" distribución geométrica, es una cuestión de convención y conveniencia.

Propiedades:

Si la probabilidad de éxito en cada ensayo es p, entonces la probabilidad de que x ensayos sean necesarios para obtener un éxito es

para x = 1, 2, 3,.... Equivalentemente, la probabilidad de que haya x fallos antes del primer éxito es

para x = 0, 1, 2, 3,....

En ambos casos, la secuencia de probabilidades es una progresión geométrica.

El valor esperado de una variable aleatoria X distribuida geométricamente es

y dado que Y = X-1,

En ambos casos, la varianza es

Las funciones generatrices de probabilidad de X y la de Y son, respectivamente,

Como su análoga continua, la distribución exponencial, la distribución geométrica carece de memoria. Esto significa que si intentamos repetir el experimento hasta el primer éxito, entonces, dado que el primer éxito todavía no ha ocurrido, la distribución de probabilidad condicional del número de ensayos adicionales no depende de cuantos fallos se hayan observado. El dado o la moneda que uno lanza no tiene "memoria" de estos fallos. La distribución geométrica es de hecho la única distribución discreta sin memoria.

De todas estas distribuciones de probabilidad contenidas en {1, 2, 3,... } con un valor esperado dado μ, la distribución geométrica X con parámetro p = 1/μ es la de mayor entropía.

La distribución geométrica del número y de fallos antes del primer éxito es infinitamente divisible, esto es, para cualquier entero positivo n, existen variables aleatorias independientes Y 1,..., Yn distribuidas idénticamente la suma de las cuales tiene la misma distribución que tiene Y. Estas no serán geométricamente distribuidas a menos que n = 1.

Distribución hipergeométrica

En teoría de la probabilidad la distribución hipergeométrica es una distribución discreta relacionada con muestreos aleatorios y sin reemplazo. Supóngase que se tiene una población de N elementos de los cuales, d pertenecen a la categoría A y N-d a la B. La distribución hipergeométrica mide la probabilidad de obtener x ( ) elementos de la categoría A en una muestra sin reemplazo de n elementos de la población original.

Propiedades:

La función de probabilidad de una variable aleatoria con distribución hipergeométrica puede deducirse a través de razonamientos combinatorios y es igual a

donde es el tamaño de población, es el tamaño de la muestra extraída, es el número de elementos en la población original que pertenecen a la categoría deseada y es el número de elementos en la muestra que pertenecen a dicha categoría. La notación hace referencia al coeficiente binomial, es decir, el número de combinaciones posibles al seleccionar elementos de un total .

El valor esperado de una variable aleatoria X que sigue la distribución hipergeométrica es

y su varianza,

En la fórmula anterior, definiendo

y

se obtiene

La distribución hipergeométrica es aplicable a muestreos sin reemplazo y la binomial a muestreos con reemplazo. En situaciones en las que el número esperado de repeticiones en el muestreo es presumiblemente bajo, puede aproximarse la primera por la segunda. Esto es así cuando N es grande y el tamaño relativo de la muestra extraída, n/N, es pequeño.

Distribución de Bernoulli

En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito ( ) y valor 0 para la probabilidad de fracaso ( ).

Si es una variable aleatoria que mide "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria se distribuye como una Bernoulli de parámetro .

La fórmula será:

Su función de probabilidad viene definida por:

Distribución uniforme discreta

(Redirigido desde «Distribución uniforme (discreta)»)

En teoría de la probabilidad, la distribución uniforme discreta es una distribución de probabilidad que asume un número finito de valores con la misma probabilidad.

Distribución uniforme (caso discreto).

Si la distribución asume los valores reales , su función de probabilidad es

y su función de distribución la función escalonada

Su media estadística es

y su varianza

Ejemplos:

• Para un dado perfecto, todos los resultados tienen la misma probabilidad 1/6. Luego, la probabilidad de que al lanzarlo caiga 4 es 1/6.

• Para una moneda perfecta, todos los resultados tienen la misma probabilidad 1/2. Luego, la probabilidad de que al lanzarla caiga cara es 1/2.

...

Descargar como  txt (13.5 Kb)  
Leer 8 páginas más »
txt