ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Tecnologia


Enviado por   •  11 de Enero de 2014  •  1.948 Palabras (8 Páginas)  •  178 Visitas

Página 1 de 8

Introducción

El control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales, robótica, económicos, biológicos, etc. Como el control automático va ligado a, prácticamente, todas las ingenierías (eléctrica, electrónica, mecánica, sistemas, industrial, química, etc.), este documento ha sido desarrollado de tal manera que permita al lector construir un controlador PID análogo sin que sea necesario tener conocimientos previos en electrónica.

El sistema de posición con elementos de fácil consecución en el mercado local. Posteriormente, luego de familiarizarse con el funcionamiento del sistema, hallará el modelo matemático del mismo por métodos experimentales. Hallar el Lugar de las Raíces del sistema, el cual le dará información importante sobre la dinámica del mismo. El conocimiento del funcionamiento del sistema junto con el análisis de la función de transferencia de lazo abierto y del Lugar de las Raíces darán las bases necesarias para seleccionar el controlador, el cual se construirá con elementos igualmente de fácil acceso en el mercado local y de muy bajo costo.

Definiciones.

Señal de salida: es la variable que se desea controlar (posición, velocidad, presión, temperatura, etc.). También se denomina variable controlada.

Señal de referencia: es el valor que se desea que alcance la señal de salida.

Error: es la diferencia entre la señal de referencia y la señal de salida real.

Señal de control: es la señal que produce el controlador para modificar la variable controlada de tal forma que se disminuya, o elimine, el error.

Señal analógica: es una señal continua en el tiempo.

Señal digital: es una señal que solo toma valores de 1 y 0. El PC solo envía y/o recibe señales digitales.

Conversor analógico/digital: es un dispositivo que convierte una señal analógica en una señal digital (1 y 0).

Conversor digital/analógico: es un dispositivo que convierte una señal digital en una señal analógica (corriente o voltaje).

Planta: es el elemento físico que se desea controlar. Planta puede ser: un motor, un horno, un sistema de disparo, un sistema de navegación, un tanque de combustible, etc.

Proceso: operación que conduce a un resultado determinado.

Sistema: consiste en un conjunto de elementos que actúan coordinadamente para realizar un objetivo determinado.

Perturbación: es una señal que tiende a afectar la salida del sistema, desviándola del valor deseado.

Sensor: es un dispositivo que convierte el valor de una magnitud física (presión, flujo, temperatura, etc.) en una señal eléctrica codificada ya sea en forma analógica o digital. También es llamado transductor. Los sensores, o transductores, analógicos envían, por lo regular, señales normalizadas de 0 a 5 voltios, 0 a 10 voltios o 4 a 20 mA.

Sistema de control en lazo cerrado: es aquel en el cual continuamente se está monitoreando la señal de salida para compararla con la señal de referencia y calcular la señal de error, la cual a su vez es aplicada al controlador para generar la señal de control y tratar de llevar la señal de salida al valor deseado. También es llamado control realimentado.

Sistema de control en lazo abierto: en estos sistemas de control la señal de salida no es monitoreada para generar una señal de control.

Planteamiento del problema

Se requiere diseñar y construir un controlador PID para regular la posición de un servomotor de corriente directa. La figura 1 muestra el diagrama de bloques del sistema controlado, en donde:

La señal de salida, y, corresponde a la salida del terminal móvil del potenciómetro. Si éste se alimenta con 5 voltios en sus terminales fijos (a y b), producirá un voltaje en su terminal móvil (c) equivalente a su posición. Podemos decir entonces que cuando produce 0 voltios está en la posición equivalente a 0 grados, 1.25 voltios corresponderá a 90 grados, 2.5 voltios a 180 grados, etc.

La señal de referencia, r, corresponde a la posición deseada. Es decir, si queremos que el motor alcance la posición 180 grados debemos colocar una referencia de 2.5 voltios, si queremos 270 grados colocamos referencia de 3.75 voltios, etc.

La señal de error, e, corresponde a la diferencia entre la señal de referencia y la señal de salida. Por ejemplo, si queremos que el motor alcance la posición de 90 grados colocamos una señal de referencia de 1.25 voltios y esperamos dónde se ubica exactamente. Si se posiciona en 67.5 grados el potenciómetro entregará una señal de salida de 0.9375 voltios y la señal de error, e, será de 0.3125 voltios (22.5 grados).

La señal de control, u, corresponde al voltaje producido por el controlador para disminuir o anular el error. Si la señal de error es positiva indica que la referencia es mayor que la salida real, entonces el controlador coloca un voltaje positivo al motor para que continúe girando hasta minimizar o anular el error. Si por el contrario la señal de error resulta negativa indica que la salida sobrepasó la referencia entonces el controlador debe poner un voltaje negativo para que el motor gire en sentido contrario hasta minimizar o anular el error.

Figura 1. Diagrama de bloques del sistema controlado

Construcción del prototipo

Palabras claves: control PID, Lugar de las Raíces, polos, ceros, error en estado estacionario, amplificador operacional.

Figura1.Controlador PID analógico

Este imagen presenta los pasos a seguir para diseñar el control de posición de un servomecanismo de corriente directa (cd) y construirlo empleando amplificadores operacionales y elementos electrónicos de fácil manejo y bajo costo. Se ha elaborado asumiendo que el lector tiene muy pocos conocimientos en electrónica pero tiene conocimientos básicos de Control Automático. El controlador PID que se construirá al final del documento es aplicable a cualquier proceso de una entrada / una salida SISO, cuya señal de salida esté en el rango de 0 a 5 voltios de cd y la señal de entrada al proceso pueda ser una señal de –12 a +12 voltios de cd, 4 amperios.

El sistema de posición al cual se le implementará el controlador y consta, básicamente, de un motor de corriente directa (cd) de imán permanente, al cual se le ha acoplado en el eje un potenciómetro lineal de 0 a 10 KW. El potenciómetro es alimentado con 5 voltios de cd en sus terminales fijos para obtener, de su terminal móvil, una señal que varía de 0 a 5 voltios durante todo el recorrido en sentido de las manecillas del reloj (asumamos 360 grados).

Potenciómetro lineal de 10 KW, una sola vuelta. Se recomienda que sea estrictamente lineal para un mejor desempeño.

Acople mecánico entre el eje del motor y el eje del potenciómetro.

Fuente de 5 voltios de corriente directa para alimentar los terminales fijos del potenciómetro.

Fuente dual con voltajes de 0 a 15 voltios de cd, 1 amperio mínimo.

Esta última fuente se empleará para alimentar el amplificador operacional y el circuito de potencia (transistores) con voltajes +V y –V, de tal manera que el motor pueda girar en ambos sentidos.

Figura 2 Curva característica de un potenciómetro lineal.

Modelado matemático

Para obtener un buen modelo matemático empleando técnicas de identificación, se debe alimentar el sistema con una señal de entrada de frecuencia variable que lo excite en todo su ancho de banda y se procesan las señales entrada y salida hasta obtener el modelo que represente en mejor forma la dinámica del sistema.

La función de transferencia de un sistema se define como la relación entre la salida y la entrada del sistema en el dominio de Laplace asumiendo condiciones iniciales nulas. Basándonos en la definición de la función de transferencia, aplicaremos una señal escalón al sistema, graficaremos la salida, hallaremos las ecuaciones de cada variable en el dominio del tiempo, las llevamos al dominio de Laplace, y la relación salida-entrada será el modelo matemático del mismo.

La señal de salida corresponderá a una señal rampa con pendiente m

Cuya transformada de Laplace será

La señal de entrada corresponde a una señal escalón de amplitud igual a la del voltaje de cd aplicado

Cuya transformada de Laplace es

El modelo matemático será la función de transferencia del sistema, es decir

Realice la prueba con diferentes voltajes aplicados al motor, para un mismo tiempo de duración de la experiencia, y verifique que la relación m/V permanezca aproximadamente constante.

Análisis del modelo matemático del sistema

Antes de iniciar con el diseño del controlador es necesario hacer un análisis del modelo matemático obtenido.

Polos y ceros

El modelo obtenido no tiene ceros y tiene un polo en el origen. Un polo en el origen representa un sistema tipo 1.

La figura muestra nuestro sistema en lazo cerrado sin controlador, donde G(s) es la función de trasferencia del conjunto motor-potenciómetro y H(s) es la función de transferencia del lazo de retroalimentación, que en nuestro caso es unitaria. La salida del sistema, y (t), es la señal de voltaje del potenciómetro y, por lo tanto, la señal de referencia debe ser una señal de voltaje de 0 a 5 voltios. Así, si se desea un giro desde 0 a 180 grados se debe aplicar una referencia de 2.5 voltios.

Diagrama de bloque del sistema en lazo cerrado sin controlador

La ecuación de error es

Donde

Y

Por lo tanto

Aplicando el teorema del valor final hallamos que el error en estado estacionario tiene la forma

Es decir, si la entrada es un escalón de amplitud V (la transformada de Laplace de la función escalón es V / s), el error en estado estacionario será

O sea,

Lo anterior quiere decir que nuestro sistema en lazo cerrado respondería ante una orden de ubicación en cualquier posición angular, con gran exactitud. En la práctica no sería así por lo siguiente: imaginemos que queremos cambiar la posición del potenciómetro, que está en 0 grados, a la posición correspondiente a 180 grados; aplicamos entonces un voltaje de referencia de 2.5 voltios. El sumador resta de 2.5 voltios, de la señal de referencia, la señal de voltaje de salida, proveniente del potenciómetro, produciendo la señal de error que será el voltaje que se aplicará al motor. La tabla 1 muestra la forma como varía el error (y por lo tanto el voltaje aplicado al motor) a medida que el potenciómetro se mueve hacia la posición de 180 grados.

Referencia

(voltios) Posición angular del potenciómetro (grados) Voltaje producido por el potenciómetro

y(t) Señal de error

Voltaje aplicado al motor

2.5 20 0.278 2.22

2.5 40 0.556 1.944

2.5 60 0.833 1.667

2.5 80 1.111 1.389

2.5 100 1.389 1.111

2.5 120 1.667 0.833

2.5 140 1.944 0.556

2.5 160 2.222 0.278

2.5 180 2.500 0.000

Tabla 1. Variación de la señal de error en el sistema en lazo cerrado sin controlador

Como sabemos que existe un voltaje mínimo, superior a cero, al cual el motor no continuará girando porque no es capaz de vencer su propia inercia, éste se detendrá sin lograr alcanzar el objetivo deseado, es decir sin lograr un error nulo.

Tampoco podemos decir que el sistema de posición no es un sistema tipo 1 sino un sistema tipo 0, ya que en este último el error ante una señal de referencia escalón, es igual a

Donde K es la ganancia del sistema en lazo abierto, lo que significa que el error en estado estacionario sería un porcentaje constante de la señal de referencia. Apoyándonos en la tabla 1 podemos apreciar que en nuestro sistema esto no ocurre ya que si la señal de referencia es alta el voltaje inicial aplicado al motor también sería alto (asumiendo error inicial alto) de tal manera que podría desarrollar una gran velocidad inicial y, cuando alcance valores de error cercanos a cero (y por lo tanto valores de voltajes, aplicados al motor, muy bajos), no se detendría inmediatamente, alcanzando valores de error menores a lo esperado o valores de error negativos. Lo mismo no ocurriría a valores de referencia de magnitud media o baja.

...

Descargar como  txt (12 Kb)  
Leer 7 páginas más »
txt