ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Probabilidades

kliche686 de Mayo de 2013

5.465 Palabras (22 Páginas)314 Visitas

Página 1 de 22

INSTITUTO de TECNOLOGÍA O. R. T. Carrera: Análisis de Sistemas de Computación

Instituto Incorporado a la Enseñanza Oficial (A-763) CURSO DE ESTADÍSTICA

Versión 2007 23

UNIDAD III

DISTRIBUCIONES ESPECIALES

Experimentos aleatorios y sus repeticiones.

Cuando se realiza un experimento aleatorio y se está interesado en conocer si sucede o no un determinado evento A, puede definirse una variable aleatoria discreta X, asignando a X el valor 1 en caso de que ocurra A, y el valor 0 a X en caso contrario.

A menudo suele referirse como “éxito” a que ocurra el suceso de interés A, y como fracaso a que no ocurra.

Si se conoce la probabilidad p de éxito, la distribución de probabilidad está dada por:

X

1 (éxito)

0 (fracaso)

P(x)

p

1-p

En este caso el valor esperado es E(X) = p, y la varianza es V(X) = p(1-p).

Repeticiones independientes de un experimento aleatorio: proceso de Bernoulli Se realizan repeticiones o ensayos independientes de un experimento. En cada ensayo son posibles dos resultados: éxito con probabilidad p o fracaso con probabilidad 1 – p. La probabilidad de éxito no cambia de un ensayo a otro, tampoco la probabilidad de fracaso.

Según se esté interesado en la cantidad de éxitos alcanzados para un número de ensayos fijo o en la cantidad de ensayos que se realizan para lograr un éxito se tienen dos distribuciones diferentes:

Distribución Binomial

Es la distribución de probabilidad de una variable aleatoria discreta X llamada variable binomial que aparece en un proceso de Bernoulli en el que: El número: n de ensayos o repeticiones está fijo.

La variable aleatoria X se define como:

X = el número de éxitos en los n ensayos. Es una variable discreta: Posibles valores de X: 0,1,2,3,... n.

La probabilidad de que haya k éxitos en los n ensayos, siendo k un valor posible: 0,1,2...n, está dada por:

P(X = k) = knkppknkn)1()!(!! resulta E(X) = np V(X) = np(1-p)

Observación: k! Es el número “Factorial de k” designa al producto de los “k” primeros números naturales, es decir: k! = k (k-1)(k-2)....3.2.1 = k (k-1)!

Notación: Para señalar que X es una variable binomial, se indica X ~ B(n, p).

Los valores numéricos de las probabilidades, suelen calcularse por medio de calculadora, tablas o utilizando un software para computadora.

Por ejemplo con Excel:

1. Seleccionar una celda donde se desea que aparezca la probabilidad binomial

2. Seleccionar: Insertar, Función, Estadísticas, DISTR.BINOM esta función tiene cuatro argumentos:

DISTR.BINOM(núm_éxito;ensayos;prob_éxito;acumulado)

Núm_éxito es el número de éxitos en los ensayos. “ k ”

Ensayos es el número de ensayos independientes. “ n ”

Prob_éxito es la probabilidad de éxito en cada ensayo. “ p ”

Acumulado es un valor lógico que determina la forma de la función. Si el argumento acumulado es VERDADERO, DISTR.BINOM devuelve la función de distribución acumulada, si es FALSO, devuelve la función de probabilidad correspondiente al argumento núm_éxito.

INSTITUTO de TECNOLOGÍA O. R. T. Carrera: Análisis de Sistemas de Computación

Instituto Incorporado a la Enseñanza Oficial (A-763) CURSO DE ESTADÍSTICA

Versión 2007 24

Distribución Geométrica

Es la distribución de probabilidad de una variable aleatoria discreta X llamada variable geométrica que aparece en un proceso de Bernoulli en el que: Se cuenta el número de ensayos necesarios hasta que ocurra un suceso A por primera vez, es decir hasta lograr el primer éxito, si hacen falta un número k de ensayos hasta el primer éxito, éste ocurrirá en el k-ésimo ensayo, siendo fracasos los anteriores k-1.

X = el número de ensayos necesarios hasta lograr el primer éxito. Posibles valores de X: 1,2,3,........

La probabilidad de que se hayan necesitado k ensayos hasta lograr el primer éxito, siendo k un valor 1,2,3,....está dada por :

P(X = k) = p (1 – p )k - 1 y resulta: P(X m ) = 1- (1 – p )m ; E(X) = p1; V(X) =21pp

Notación : X ~ G(p)

Distribución de Poisson

Es la distribución de probabilidad de una variable discreta X que se utiliza para indicar el número de ocurrencias de un suceso A en un intervalo de tiempo (o de espacio). Se cumplen: La probabilidad de una ocurrencia es igual en dos intervalos cualesquiera de igual longitud. La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.

Valores posibles de X: 0,1,2,3.....................

Si el valor esperado o cantidad promedio de ocurrencias en un intervalo es un número >0, la probabilidad de que A suceda k veces en el intervalo dado, siendo k = 0,1,2,3.......... está dada por:

P( X = k ) = !kek resulta E(X) = , V(X) =

Notación : X ~ P ( )

Los valores numéricos de las probabilidades, suelen calcularse por medio de calculadora, tablas o utilizando un software para computadora.

Por ejemplo con Excel:

1. Seleccionar una celda donde se desea que aparezca la probabilidad Poisson.

2. Seleccionar: Insertar, Función, Estadísticas, POISSON esta función tiene tres argumentos:

POISSON(x;media;acumulado)

X es el número de sucesos.

Media es el valor numérico esperado.

Acumulado es un valor lógico que determina la forma de la distribución de probabilidad devuelta. Si el argumento acumulado es VERDADERO, POISSON devuelve la probabilidad de Poisson de que un suceso aleatorio ocurra un número de veces comprendido entre 0 y x inclusive; si el argumento acumulado es FALSO, la función devuelve la probabilidad de Poisson de que un suceso ocurra exactamente x veces.

En muchos casos es el valor esperado en un intervalo unitario. Si se desea conocer la probabilidad de que el suceso A ocurra k veces en un intervalo de longitud t >0, la variable a considerar ahora será X t que tendrá una distribución de Poisson con parámetro t. X t ~ P ( t ).

INSTITUTO de TECNOLOGÍA O. R. T. Carrera: Análisis de Sistemas de Computación

Instituto Incorporado a la Enseñanza Oficial (A-763) CURSO DE ESTADÍSTICA

Versión 2007 25

Distribución normal

Es la distribución más importante, corresponde a una variable continua que toma todos los valores reales y tal que E(X) = , V(X) = 2. La desviación estándar es . El gráfico de su función de densidad es simétrico, el área total bajo la curva es 1, y casi toda el área está comprendida entre x = - 3 y x = + 3. A ambos lados de , el área es 0.5.

- +

Notación: Se indica X ~ N(,)

Distribución normal estándar

Corresponde al caso en que = 0, y = 1. Si bien hay un número ilimitado de distribuciones de probabilidad normal, sin embargo, si X ~ N(,), entonces, XZ ~ N(0,1). Así las probabilidades pueden calcularse sobre la base de la distribución normal estándar:

P( a < X ≤ b ) = P ( bXa ) = P (bZa)

Esta igualdad se utiliza cuando se calculan probabilidades normales con tabla.

Si se utiliza Excel:

1. Seleccionar una celda donde se desea que aparezca la probabilidad normal

2. Seleccionar: Insertar, Función, Estadísticas, DISTR.NORM esta función tiene cuatro argumentos:

DISTR.NORM(x; media; desv_estándar; acum)

x es el argumento para el cual se desea obtener el valor de la función de distribución o el de la función de densidad.

Media es la media de la distribución.

Desv_estándar es la desviación estándar de la distribución.

Acum es un valor lógico que determina la forma de la función. Si el argumento acum es VERDADERO, la función DISTR.NORM devuelve la función de distribución acumulada; si es FALSO, devuelve la función de densidad de probabilidad.

Distribución Uniforme

Es la distribución de una variable continua X que toma todos los valores en el intervalo [a, b]. Su función de densidad f (x) es constante en [a, b] :

baxsibaxsiabxf,0,1)( resulta E(X) = (a+b)/2 , V(X) = (a-b)2 / 12.

La función de distribución de una variable aleatoria uniforme en el intervalo [a, b] es:

-3-2-1012300.050.10.150.20.250.30.350.4

INSTITUTO de TECNOLOGÍA O. R. T. Carrera: Análisis de Sistemas de Computación

Instituto Incorporado a la Enseñanza Oficial (A-763) CURSO DE ESTADÍSTICA

Versión 2007 26

xb si bxa si b-ax-aaxsi xF 1 0)(

Notación: Se indica : X~U[a,b]. Representa la analogía continua a la distribución de probabilidad discreta en que los valores son igualmente probables.

Distribución exponencial

Es la distribución de una variable continua que toma solo valores no negativos. Esta variable aparece cuando se considera el tiempo necesario para que un suceso A ocurra por primera vez.

Su función de densidad es 000)(xsixsiexfx.

Su función de distribución acumulada F(x) = P( X x ) es:

0 10 0)(si x - esi xxFx- resulta también E(X) = (1 /), V(X) = (1 /2 ).

Notación: Se indica X ~ ε ().

Los valores numéricos de las probabilidades, suelen calcularse por medio de calculadora, o utilizando un software para computadora.

Por ejemplo con Excel: se puede utilizar siguiendo los pasos anteriores la función estadística : Gamma(1, ) donde es igual a la media es decir = 1/ .

Relación entre la distribución de Poisson y la distribución exponencial

Si X = tiempo que transcurre hasta que A ocurre por primera vez (o sea entre dos ocurrencias

...

Descargar como (para miembros actualizados) txt (33 Kb)
Leer 21 páginas más »
Disponible sólo en Clubensayos.com